Peter Zvengrowski

Professor Emeritus

Department of Mathematics and Statistics

PhD

University of Chicago, 1964

MSc

University of Chicago, 1960

BSc

Rensselaer Polytechnic Institute, 1959

Contact information


Research and teaching

Research areas

  • Differential topology, the span of smooth manifolds
  • Graph theory, map colourings
  • Theoretical physics, relativistic kink theory
  • Topology of 3-manifolds
  • Function theory

Publications

Book

  • Zvengrowski, Peter. Remarks on the span of projective {S}tiefel manifolds World Sci. Publishing, 2000. 85-98. Print.
  • Bryden, John and Zvengrowski, Peter. The cohomology algebras of orientable {S}eifert manifolds and applications to {L}usternik-{S}chnirelmann category 45. Polish Acad. Sci., 1998. 25-39. Print.
  • Williams, J. G. and Zvengrowski, Peter. Counting kinks in {$1+1$} dimensions 15. Amer. Math. Soc., 1997. 357-360. Print.
  • Williams, J. G. and Zvengrowski, Peter. Homotopy classification of metrics in {$2+1$} dimensions World Sci. Publishing, 1992. 540-542. Print.
  • Zvengrowski, Peter. Recent work on the parallelizability of flag manifolds 58. Amer. Math. Soc., 1987. 129-137. Print.

Journal article

  • Bauer, Kristine, Sen, Debasis and Zvengrowski, Peter. "A generalized Goursat lemma". Tatra Mountains mathematical publications 64.1 (2015): 1-19. Print.
  • Bauer, Kristine, DeLoup, Florian and Zvengrowski, Peter. "Base points in homotopy theory and the Fundamental Theorem of Algebra". Morphismos 13.1 (2009): 1-15. Print.
  • Kudryavtseva, Elena, Saidak, Filip and Zvengrowski, Peter. "Riemann and his zeta function". Morfismos 9.2 (2005): 1-39. Print.
  • Zvengrowski, Peter. "On the modulus of the {R}iemann zeta function in the critical strip". Math. Slovaca 53.2 (2003): 145-172. Print.
  • Adams, Josh, Zvengrowski, Peter and Laird, Philip. "Vertex embeddings of regular polytopes". Expositiones Mathematicae 21.4 (2003): 339-353. Print.
  • Bryden, John and Zvengrowski, Peter. "The integral homology of orientable {S}eifert manifolds". Topology and its Applications 127.1-2 (2003): 259-275. Print.
  • Bryden, John and Zvengrowski, Peter. "The cohomology ring of the orientable {S}eifert manifolds. {II}". Topology and its Applications 127.1-2 (2003): 213-257. Print.
  • Bryden, John, Hayat-Legrand, C., Zieschang, H. and Zvengrowski, Peter. "The cohomology ring of a class of {S}eifert manifolds". Topology and its Applications 105.2 (2000): 123-156. Print.
  • Zvengrowski, Peter. "The order of the {H}opf bundle on projective {S}tiefel manifolds". Fundamenta Mathematicae 161.1-2 (1999): 225-233. Print.
  • Zvengrowski, Peter. "{$K$}-theory of oriented {G}rassmann manifolds". Math. Slovaca 47.3 (1997): 319-338. Print.
  • Zvengrowski, Peter. "Stable parallelizability of partially oriented flag manifolds. {II}". Canadian Journal of Mathematics. Journal Canadien de Math\'ematiques 49.6 (1997): 1323-1339. Print.
  • Zvengrowski, Peter. "Recent progress in the topology of projective {S}tiefel manifolds". Matem\'atica Contempor\^anea 13. (1997): 289-297. Print.
  • Bryden, John, Hayat-Legrand, Claude, Zieschang, Heiner and Zvengrowski, Peter. "L'anneau de cohomologie d'une vari\'et\'e de {S}eifert". Comptes Rendus de l'Acad\'emie des Sciences. S\'erie I. Math\'ematique 324.3 (1997): 323-326. Print.
  • Korba{\v{s}}, J and Zvengrowski, Peter. "On sectioning tangent bundles and other vector bundles". Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento, 39 (1996): 85-104. Print.
  • Korba{\v{s}}, J and Zvengrowski, Peter. "The vector field problem: a survey with emphasis on specific manifolds". Expositiones Mathematicae. International Journal for Pure and Applied Mathematics 12.1 (1994): 3-20. Print.
  • Milgram, R. and Zvengrowski, Peter. "An application of principal bundles to coloring of graphs and hypergraphs". Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento, 37 (1994): 161-167. Print.
  • Zvengrowski, Peter. "Maps into {${\bf R}{\rm P}\sp 2$} and applications". Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento, 32 (1993): 155-163. Print.
  • Zvengrowski, Peter. "{$3$}-manifolds and relativistic kinks". Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento, 30 (1993): 157-162. Print.
  • Williams, J. G. and Zvengrowski, Peter. "{$2+1$} gravity kinks for multiply connected spacetime manifolds". , (1992): 364-367. Print.
  • Gilbert, Shirley M. F. and Zvengrowski, Peter. "A relation between {$S\sp 1$} and {$S\sp 3$}-invariant homotopy in the stable range". Canadian Mathematical Bulletin. Bulletin Canadien de Math\'ematiques 35.1 (1992): 75-80. Print.
  • Williams, J. G. and Zvengrowski, Peter. "Kink metrics in {$(2+1)$}-dimensional space-time". Journal of Mathematical Physics 33.1 (1992): 256-266. Print.
  • Shastri, A. R. and Zvengrowski, Peter. "Type of {$3$}-manifolds and addition of relativistic kinks". Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics 3.4 (1991): 467-478. Print.
  • Williams, J. G. and Zvengrowski, Peter. "Homotopy and {L}orentz metrics in {$(2+1$}) dimensions". , (1990): 364-367. Print.
  • Zvengrowski, Peter. "Stable parallelizability of partially oriented flag manifolds". Pacific Journal of Mathematics 128.2 (1987): 349-359. Print.
  • Zvengrowski, Peter. "On stable parallelizability of flag manifolds". Pacific Journal of Mathematics 122.2 (1986): 455-458. Print.
  • Antoniano, E., Gitler, S., Ucci, J. and Zvengrowski, Peter. "On the {$K$}-theory and parallelizability of projective {S}tiefel manifolds". Bolet\'\i n de la Sociedad Matem\'atica Mexicana. Segunda Serie 31.1 (1986): 29-46. Print.
  • Trew, S. and Zvengrowski, Peter. "Nonparallelizability of {G}rassmann manifolds". Canadian Mathematical Bulletin. Bulletin Canadien de Math\'ematiques 27.1 (1984): 127-128. Print.
  • Shastri, A. R., Williams, J. G. and Zvengrowski, Peter. "Kinks in general relativity". International Journal of Theoretical Physics 19.1 (1980): 1-23. Print.
  • Gilbert, Shirley and Zvengrowski, Peter. "{$S\sp{1}$}-invariant homotopy of spheres". Osaka Journal of Mathematics 17.3 (1980): 603-617. Print.
  • Zvengrowski, Peter. "Iterated absolute differences". Mathematics Magazine 52.1 (1979): 36-40. Print.
  • Milgram, R. and Zvengrowski, Peter. "Even {W}hitehead squares are not projective". Canadian Journal of Mathematics. Journal Canadien de Math\'ematiques 29.5 (1977): 957-962. Print.
  • Milgram, R., Strutt, J. and Zvengrowski, Peter. "Projective stable stems of spheres". Bolet\'\i n de la Sociedad Matem\'atica Mexicana. Segunda Serie 22.2 (1977): 48-57. Print.
  • Milgram, R. J. and Zvengrowski, Peter. "Skewness of {$r$}-fields on spheres". Topology 15.4 (1976): 325-335. Print.
  • Milgram, R. J. and Zvengrowski, Peter. "Projective {S}tiefel manifolds and skew linear vector fields". Proc. London Math. Soc. (3) 28. (1974): 671-682. Print.
  • Zvengrowski, Peter. "Skew linear vector fields on spheres". Journal of the London Mathematical Society. Second Series 3. (1971): 625-632. Print.
  • Zvengrowski, Peter. "Canonical vector fields on spheres". Comment. Math. Helv. 43. (1968): 341-347. Print.
  • Zvengrowski, Peter. "A {$3$}-fold vector product in {$R\sp{3}$}". Comment. Math. Helv. 40. (1966): 149-152. Print.
  • Zvengrowski, Peter. "Perfect transfinite numbers". Fundamenta Mathematicae 52. (1963): 123-128. Print.

Preprint

  • Zvengrowski, Peter and Ainouline, A.. "Critical Values of Differential Functions of the Reals.". , (2001). Print.