Development of an Immersive Virtual Reality Model of the Immune System in Response to SARS-CoV-2 Infection using LifeBrush

Lucia Fu1,2, Lorena Yeung3, Vineet Kour3, Michael Wahba4

1Department of Psychology, 2Department of Biological Sciences, 3Department of Chemistry, 4Department of Computer Sciences
University of Calgary 2500 University Dr NW, Calgary, AB T2N 1N4, Canada

INTRODUCTION
• Lifebrush is a virtual reality tool that allows the creation of dynamic molecular illustrations using a multi-agent system.1 It was designed to be an educational tool for use in classrooms.

METHODS
• Lifebrush is a virtual reality tool that allows the creation of dynamic molecular illustrations using a multi-agent system.1 It was designed to be an educational tool for use in classrooms.

• The aim for this project is to create a new scenario in Lifebrush. The model system chosen for this project is the human immune system.
• This project intends to set a solid foundation for future researchers to build on.
• Future researchers will have to expand Lifebrush into a diverse library of interactive educational experiences.

COVID-19
• Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that is responsible for the COVID-19 pandemic.2
• SARS-CoV-2 are enveloped, positive single-stranded RNA viruses.2
• These viruses enter the host cell by a transmembrane spike protein and binds to the angiotensin converting enzyme 2 (ACE2) receptor.2
• These viruses have the ability to activate the innate and adaptive immune response.3

Fig 2. Model of SARS-CoV-2 structure created with BioRender.4

IMMUNE SYSTEMS

Innate immunity (quick, non-specific)

Adaptive immunity (long-term, specific)

COVID-19 STIMULATION

References