1. Carefully define the terms marked in bold type. [2 each]
 a) A measure μ on a measurable space (X, \mathcal{F}).
 b) A measurable function $f : X \rightarrow Y$ of measurable spaces (X, \mathcal{M}) and (Y, \mathcal{N}).
 c) A σ-finite measure space (X, \mathcal{F}, ν).
 d) A Banach space M.
 e) A (Hilbert space) basis of a Hilbert space H.
 f) The Fourier transform $\mathcal{F}(f)$ of $f \in L^1(\mathbb{R}, \mu)$.
 g) The convolution $f * h$ of $f, h \in L^1(\mathbb{R}, \mu)$.

2. Carefully state, with details, the following results. [2 each]
 a) The Cauchy-Schwarz Inequality.
 b) Stone-Weierstrass Theorem for $C(X, \mathbb{C})$, where X is a compact Hausdorff (or metric) space.
 c) The Hölder Inequality.
 d) The Monotone Convergence Theorem.

3. [3]
 a) Define a function $f : [a, b] \rightarrow \mathbb{R}$ is continuous ae.
 b) Show, or give a counterexample to, the following (provide details of your reasoning): If $f : [0, 1] \rightarrow \mathbb{R}$ measurable with $f = 0$ ae, then f is continuous ae.

4. Let (M, ρ) be a metric space. Assume S a compact subset of M, $p \in M$ and $d = \inf_{a \in S} \rho(a, p)$. Show there is an $m \in S$ with $\rho(m, p) = d$. [3]

5. Let (X, \mathcal{F}, ν) be a measure space and $f : X \rightarrow \mathbb{R}$ a measurable function, $f \geq 0$ ae. Prove if $\int_X f d\nu = 0$ then $f = 0$ ae. [3]

6. [2]
 a) Show $\|f\| = \int_{[0,1]} |f| \, d\mu$ defines a norm on $C([0,1], \mathbb{R})$.
 b) Show this normed space is not complete (as a metric space). [2]
7.
 a) Prove, quoting results you use, that \(\sum_{n=0}^{\infty} (2/3)^n \exp(2\pi int) \) defines a continuous function \(f \) of \(t \) on \([0, 1]\). [3]
 b) Show \(\mathcal{C}([0, 1]) \) is contained in \(L^2([0, 1], \mu) \). [1]
 c) For this \(f \) compute \(\|f\|_2 \). [2]

Further questions for those graduate students writing the preliminary exam.

8. Let \(\{e_n | n \in I\} \) be a (Hilbert space) basis for a Hilbert space \(\mathcal{H} \). Show there is a Hilbert space isomorphism (a surjective linear isometry) \(\mathcal{H} \rightarrow l^2(I) \). [4]

9. Show \(\{\exp(2\pi int)\}_{n \in \mathbb{Z}} \) is a Hilbert space basis of \(L^2([0, 1], \mu) \). You may assume that \(\mathcal{C}([0, 1]) \) is dense in \(L^2([0, 1], \mu) \) (in the \(\|\|_2 \) norm). [3]

10. Let \(f \in L^1(\mathbb{R}, \mu), \epsilon > 0 \), and \(A_n = \{x \in \mathbb{R} | |x| \geq n\} \) for \(n \in \mathbb{N} \). Show there is an \(N_0 \in \mathbb{N} \) such that \(\int_{A_n} |f| < \epsilon \) for all \(n > N_0 \). [3]