Invited research article

Engineered carbon mineralization in ultramafic rocks for CO₂ removal from air: Review and new insights

Peter B. Kelemen⁎, Noah McQueenb, Jennifer Wilcoxb, Phil Renforthc, Greg Dippled, Amelia Paukert Vankeuren

a Dept. of Earth & Environmental Sciences, Columbia University, Lamont Doherty Earth Observatory, Palisades, NY, USA
b Clean Energy Conversions Lab, Dept. of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
c Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
d Mineral Deposit Research Unit, Dept. of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
e Geology Dept., California State University, Sacramento, Sacramento, CA, USA

ARTICLE INFO

Editor: Balz Kamber
Keywords:
Carbon mineralization
Mineral carbonation
Enhanced weathering
Mine tailings
Magnesite
Caustic magnesia
Peridotite
Serpentinites
Ultramafic rocks

ABSTRACT

Carbon Dioxide removal from air (CDR) combined with permanent solid storage can be accomplished via carbon mineralization in ultramafic rocks in at least four ways:

1. Surficial CDR: CO₂-bearing air and surface waters are reacted with crushed and or ground mine tailings, alkaline industrial wastes, or sedimentary formations rich in reactive rock fragments, all with a high proportion of reactive surface area. This can be implemented at a low cost, but most proposed methods have a very large area footprint at the gigaton scale. The area requirement can be greatly reduced by calcining (heating to produce pure CO₂ for permanent storage or use) followed by recycling of MgO, CaO, Na₂O, ... Such looping methods have predicted costs that are as low or lower than for direct air capture with synthetic sorbents or solvents (DACSS), and a similar area footprint.

2. In situ CDR: CO₂-bearing surface waters are circulated through rock formations at depth. These methods potentially have a cost similar to that of surficial carbon mineralization, and a giant storage capacity with reduced surface area requirements, but they involve uncertain feedbacks between permeability, reactive surface area, and reaction rate, providing a fascinating topic for fundamental research. Furthermore, the size, injectivity, permeability, geomechanics, and microstructure of key subsurface reservoirs for in situ CDR remain almost entirely unexplored.

3&4. Combined partial enrichment of CO₂ using direct air capture with synthetic sorbents (DACSS) plus surficial carbon mineralization (3) or in situ carbon mineralization (4). Energy requirements and total costs for partial enrichment of CO₂ are substantially lower than for enrichment to high purity. CO₂ enriched air can be sparged through mine tailings at the surface, and/or through water to increase dissolved carbon concentrations prior to circulation through rock reactants. Such combined or hybrid approaches have not been investigated thoroughly, and offer many avenues for optimization.

1. Introduction

Recently, the Intergovernmental Panel on Climate Change (IPCC) and other authoritative sources have concluded that annual removal of more than ten gigatons (Gt) CO₂ from air (CDR, aka “negative emissions”) will be required by mid-century to keep global warming below 1.5 to 2 °C (e.g., IPCC, 2014; IPCC, 2018; UNEP, 2018). The National Academies of Sciences, Engineering & Medicine (2019, NA19) reviewed negative emissions technologies, and proposed a US research agenda to move them forward. One such technology is carbon mineralization, in which CO₂ in air and water react with Mg- and Ca-rich rocks (ultramafic rocks) and industrial wastes of similar composition to form solid carbonate minerals. This is a relatively untested but potentially inexpensive and practical way to achieve CDR at a scale of 1 to 10 Gt/yr, as quantified throughout the following five sections of this paper.

Engineered carbon mineralization is better known as a potential technology for storing CO₂ captured elsewhere. Storing CO₂ via reaction with common rocks and minerals has been considered for 30 years (Lackner et al., 1995; Seifritz, 1990). More recently, the possibility of carbon mineralization using alkaline industrial waste products such as
steel slag and demolition waste has been added to the palette of options (e.g., Gadikota et al., 2015; Huijgen et al., 2007; Pan et al., 2012; Renforth, 2019; Renforth et al., 2009; Renforth et al., 2011; Sanna et al., 2014). Mineralization occurs naturally during weathering of Mg- and/or Ca-rich, Al-poor materials (e.g., “ultramafic rocks” composed mainly of the minerals olivine, serpentine, brucite, and/or wollastonite, and/or industrial wastes with similar, ultramafic compositions). In this paper, we focus on the possibility that engineered carbon mineralization could remove significant quantities of CO₂ from air.

This paper reviews carbon mineralization kinetics and the major pathways for CO₂ removal from air (CDR), combined with solid storage, via carbon mineralization, including estimates of rates, capacities and cost. The paper arises from our contributions to Chapter 6 of NA19. Unlike that Chapter, and Kelemen et al. (2019a), this paper does not review methods that use carbon mineralization to store CO₂ captured elsewhere, and instead focuses on CDR plus solid storage. Many sections in this paper that are similar to NA19 Chapter 6 are abridged here. This paper updates figures and calculations, and includes authors who contributed significantly to NA19 but were not on the National Academy committee.

Some idealized reactions are as follows:

\[
\begin{align*}
\text{wollastonite} & : \text{CaSiO}_3 + \text{CO}_2 \leftrightarrow \text{CaCO}_3, \\
\text{olivine} & : \text{Mg}_2\text{SiO}_4 + 2\text{CO}_2 \leftrightarrow 2\text{MgCO}_3 + \text{SiO}_2, \\
\text{pyroxenes} & : \text{CaMgSi}_2\text{O}_6 + 2\text{CO}_2 \leftrightarrow \text{CaMg(CO}_3)_2 + 2\text{SiO}_2, \\
\text{serpentine polytypes} & : \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + 3\text{CO}_2 \leftrightarrow 3\text{MgCO}_3 + 2\text{SiO}_2 + 2\text{H}_2\text{O}, \\
\text{and brucite} & : \text{Mg(OH)}_2 + \text{CO}_2 \leftrightarrow \text{MgCO}_3 + \text{H}_2\text{O}.
\end{align*}
\]

Wollastonite, olivine, and brucite react more rapidly than pyroxene and pyroxene with aqueous fluids at upper crustal pressures and temperatures less than ~300 °C converts silicate minerals to brucite (Mg(OH)₂), serpentine (Mg₃Si₂O₅(OH)₄), talc (Mg₃Si₂O₅(OH)₄), and various other hydrous phases. In rocks with Mg/Si > 1.5, excess Mg forms brucite (Mg(OH)₂). In turn, hydrous silicates and brucite can also react with CO₂ to form carbonates.

Some idealized reactions are as follows:

\[
\begin{align*}
\text{wollastonite} & : \text{CaSiO}_3 + \text{CO}_2 \leftrightarrow \text{CaCO}_3, \\
\text{olivine} & : \text{Mg}_2\text{SiO}_4 + 2\text{CO}_2 \leftrightarrow 2\text{MgCO}_3 + \text{SiO}_2, \\
\text{pyroxenes} & : \text{CaMgSi}_2\text{O}_6 + 2\text{CO}_2 \leftrightarrow \text{CaMg(CO}_3)_2 + 2\text{SiO}_2, \\
\text{serpentine polytypes} & : \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + 3\text{CO}_2 \leftrightarrow 3\text{MgCO}_3 + 2\text{SiO}_2 + 2\text{H}_2\text{O}, \\
\text{and brucite} & : \text{Mg(OH)}_2 + \text{CO}_2 \leftrightarrow \text{MgCO}_3 + \text{H}_2\text{O}.
\end{align*}
\]

Wollastonite, olivine, and brucite react relatively rapidly, as do fibrous serpentines with high surface area to volume ratios, such as bestowform chrysotile. Ca and Mg in alkaline industrial wastes react at about the same rate as wollastonite, especially when they are not incorporated in aluminosilicate compounds. A more extensive discussion of kinetic data for carbon mineralization is given in NA19, Chapter 6.

These reactions are spontaneous and exothermic; carbonate minerals are the “ground state” for CO₂ in near-surface rock systems such as Mg-Ca-C-O-H and Mg-Ca-Si-C-O-H (Fig. 1). The energy density of unreacted olivine in the presence of H2O or CO₂ at low temperature is ~2 GJ/m³, only ~20 times smaller than the energy density of gasoline. A key goal of research on engineered carbon mineralization is to use this naturally available reservoir of chemical potential energy to reduce external energy inputs and costs for CDR.

Reaction times for different minerals and grain sizes, approximated using data on mineral dissolution rates, are illustrated in Fig. 2 (reproduced from NA19, Fig. 6.6).
we use a gamma distribution $\Gamma(\alpha)$ previously coupled to a shrinking core model (Gbor and Jia, 2004)

$$PD = D_0 - 1e^{-D_0\alpha}(x)$$

where α and β are empirically-derived coefficients that describe the variability of particle diameter (D):

$$P(D) = \frac{D^{\alpha-1}e^{-\beta D}}{\beta^\alpha \Gamma(\alpha)}$$

A maximum mean particle size was simulated with a typical particle size distribution from comminution to achieve 90% dissolution. Dissolution rate ranges are shown for brucite (Mg(OH)_2), chrysotile serpentine ($\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4$), minerals in the plagioclase feldspar solid solution [Na endmember albite ($\text{NaAlSi}_3\text{O}_8$), Ca endmember anorthite ($\text{CaAl}_2\text{Si}_2\text{O}_8$), labradorite ($\text{NaAlSi}_3\text{O}_8$), bytownite ($\text{CaAl}_2\text{Si}_2\text{O}_8$)], wollastonite ($\text{CaSiO}_3$), and Mg-rich olivine ($\text{Mg}_2\text{SiO}_4$), derived using rate data from Palandri and Kharaka, 2004 for all minerals except chrysotile serpentine (Thom et al., 2013), assuming pH from 3 to 7, 25 °C (blue bars) and 180 °C (orange bars), and negligible effects of mineral solution saturation. Rates determined from mineral dissolution experiments are shown for (a) basalt added to artificial soil at ~10 °C (Manning et al., 2013), (b) basalt/dunite/hazburgite added to seawater at 25 °C (Rigopoulos et al., 2018b), (c) Mg-rich olivine added to soil at 25 °C (ten Berge et al., 2012), (d) Mg-rich olivine added to seawater at 25 °C (Montserrat et al., 2017), and (e) Mg-rich olivine added to soil at 19 °C, (Renforth et al., 2015).

To illustrate the relationships between rates, grain size, surface energy, grinding energy, and CO$_2$ emissions, we have added Figs. 3, 4 and 5. Most comminution technology is inefficient, and the efficiency declines with increasing surface area (Fig. 3). According to Tromans (2008) between 5 and 10% efficiency may be possible given energy dissipation from strain during crushing. Using current methods, it is possible to create surface areas of 1–10 m2/g using 10–100 kWh/t. However, if efficiencies were improved, it could be possible to reach 10–100 m2/g at ~100–500 kWh/t. In turn, such relatively minor changes in grinding cost would have a dramatic effect on the rate of carbon mineralization. Fig. 3 also illustrates that at the current emissions intensity of electricity (for example, ~400 gCO$_2$/kWh in the UK), using 100 kWh to attain a grain size of 10 m2/g in a ton of rock would release 40 kg CO$_2$, which would reduce the net carbon uptake via mineralization of typical ultramafic rock by a few percent. Future use of low carbon electricity could reduce the emissions intensity to ~50 g CO$_2$/kWh, so that CO$_2$ emissions during grinding would be negligible.

Fig. 4 supplements Fig. 2, using grinding energy estimated from the data in Fig. 3 to illustrate the energy required to achieve a given grain size, and thus a given time for carbon mineralization using different materials. For reference, 100 MJ/ton corresponds to ~28 kWh, and a cost of $1.40 to $4.20 per ton of rock at electricity costs of $0.05 to $0.15/kWh.

Fig. 5 emphasizes that the shrinking sphere approximation used to construct Figs. 2 and 4 may overestimate the energy requirements for grinding by an order of magnitude in some parameter ranges, still further reducing the importance of the energy cost of grinding when computing the overall cost and emissions consequences of proposed carbon mineralization methods.

3. Surficial CDR

3.1. One-time, one-year CDR using mine tailings

Mine tailings and some alkaline industrial wastes provide “low-hanging fruit” as rock reactants for CO$_2$ removal from air (CDR) and storage via carbon mineralization. Tailings and some wasteshave high surface area to volume ratios compared to subsurface geological formations, and are currently produced for other reasons, thus providing nearly “cost-free” feedstock for CDR. Ultramafic intrusions, with Mg to Si ratios approaching 2 and abundant olivine, are mined for platinum-group elements, Ni, and diamonds. Ultramafic lava flows (komatiites) and tectonically exposed and weathered mantle peridotites are an important source of Ni and Cr. Mafic intrusions approximately comparable in composition to basaltic lavas are mined for platinum group elements, Cr, and diamonds. Ultramafic lava flows (komatiites) and teconically exposed and weathered mantle peridotites are an important source of Ni and Cr. Mafic intrusions approximately comparable in composition to basaltic lavas are mined for platinum group elements, Ni and Cr. Smelting of these ores produces ultramafic and mafic glass, which probably reacts faster than compositionally identical minerals at the same grain size. Alkaline industrial wastes are varied, and it is beyond the scope of this paper to review their compositions. However, as an example, slag derived from smelting iron ore includes abundant Ca-Al silicate, formed by Ca derived from limestone together with Al.
and Si extracted from the iron ore.

The CO₂ uptake and storage capacity for complete carbonation in these materials is significant: 0.62 tons of CO₂ per ton of olivine reactant, 0.76 tons of CO₂ per ton of brucite reactant, and ~0.4 to 0.5 tons of CO₂ per ton of pyroxene, serpentine, wollastonite, and industrial waste similar to wollastonite in composition. Based on our informal assessment of the volume of existing mines, we estimate that the total mass of existing ultramafic tailings is <10 billion tons, of which an unknown proportion has already been carbonated during natural weathering. Annual production of new ultramafic mine tailings is about 420 million tons (Power et al., 2013b). Dipple and co-workers (Harrison et al., 2012; Power et al., 2011; Wilson et al., 2014) emphasize that at surface conditions (~10–30 °C, P(CO₂) ~0.004 atm) most minerals in ultramafic and mafic rocks are relatively slow to react, with the exception of brucite and some fibrous serpentine. Thus, they focus on rapid carbonation of "labile Mg" contained in the latter two materials. Typically, labile Mg comprises ~3 wt% of partially to fully serpentinized, ultramafic mine tailings, with a practical maximum of ~10 wt % Mg in most settings (Vanderzee et al., 2019). Carbonation of this Mg (~24 g/mol) in 420 Mt of newly produced mine tailings would consume <75 million tons of CO₂ per year. If production of ultramafic tailings increases from 420 Mt to 1–3 Gt/yr by 2100 (Renforth, 2019), then this upper bound for annual CO₂ uptake in tailings would also increase by a factor of five to fifteen.

Because the annual storage capacity of newly mined ultramafic tailings is small compared to human emissions, the question arises whether one could mine ultramafic rock for the purpose of creating fine-grained rock reactants for CDR. Quarrying, crushing, and grinding of mine tailings costs ~$10 per ton (Infomine, 2018). Carbonating 1 to 10 wt% labile Mg (2 to 16 wt% MgO), consuming ~2 to 18 wt% CO₂ in one year, would correspond to $500 to $55 per ton of CO₂. This cost is comparable to estimates for direct air capture with synthetic sorbents (DACSS) plus subsequent storage in deep sedimentary formations, within the uncertainties of all values. Additional costs per ton to speed carbon mineralization and/or reduce the area requirements for surficial CDR (e.g., spreading tailings in thin sheets, stirring them, providing access to air flow) can be negligible. For example, reprocessing diamond mine tailings, including excavation, transport and extraction of
diamonds, costs less than $2/ton of tailings (anonymous personal communication, 2018) and soil can be excavated for $1 to $2/ton (Caterpillar, 2018).

Creating tailings to consume 1 to 10 wt% labile Mg for CDR in one year might produce 10 to 100 Gt of tailings (5 to 50 km3, with a density of 2 tons/km3) per Gt of CO$_2$ removed from air. This corresponds to a layer 10 to 90 μm thick over the entire 510 million km2 area of the oceans, 0.4 to 3 mm thick over the entire 14 million km2 of arable land worldwide, or 30 to 260 m thick over Washington, D.C. (177 km2), per Gt of CO$_2$ captured from air and stored. Of course, practical application of such methodologies on land would not involve any of those scenarios, and instead almost certainly would entail spreading layers centimeters thick on marginal lands (~27 million km2, FAO, 2011). Thus, for example, if the layer were 10 cm thick, the area requirement would be about 50,000 to 500,000 km2 per Gt of CO$_2$ removed from air. Similarly, Wilson et al. (2014) demonstrated that komatiite tailings weather naturally at a rate that captures 2.5 kg CO$_2$ from air per m2 of tailings land surface per year. For this process to capture 1 Gt CO$_2$ per year, tailings would have to be spread over about 400,000 km2. Depending on scale, location and societal preferences, transporting and storing or disposing of such large volumes of tailings could be difficult to implement, except in a dire climate emergency. Furthermore, ultramafic tailings commonly contain high concentrations of Ni, Cr and other trace metals which – if introduced into food or water – could be harmful to human health. This is uncertain, as discussed at more length in Section 3.4.

Creating tailings to consume 1 to 10 wt% labile Mg for CDR in one year might produce 10 to 100 Gt of tailings (5 to 50 km3, with a density of 2 tons/km3) per Gt of CO$_2$ removed from air. This corresponds to a layer 10 to 90 μm thick over the entire 510 million km2 area of the oceans, 0.4 to 3 mm thick over the entire 14 million km2 of arable land worldwide, or 30 to 260 m thick over Washington, D.C. (177 km2), per Gt of CO$_2$ captured from air and stored. Of course, practical application of such methodologies on land would not involve any of those scenarios, and instead almost certainly would entail spreading layers centimeters thick on marginal lands (~27 million km2, FAO, 2011). Thus, for example, if the layer were 10 cm thick, the area requirement would be about 50,000 to 500,000 km2 per Gt of CO$_2$ removed from air. Similarly, Wilson et al. (2014) demonstrated that komatiite tailings weather naturally at a rate that captures 2.5 kg CO$_2$ from air per m2 of tailings land surface per year. For this process to capture 1 Gt CO$_2$ per year, tailings would have to be spread over about 400,000 km2. Depending on scale, location and societal preferences, transporting and storing or disposing of such large volumes of tailings could be difficult to implement, except in a dire climate emergency. Furthermore, ultramafic tailings commonly contain high concentrations of Ni, Cr and other trace metals which – if introduced into food or water – could be harmful to human health. This is uncertain, as discussed at more length in Section 3.4.

Several ways to reduce the area footprint and environmental impact of surficial carbon mineralization suggest themselves, one involving multi-year weathering of tailings, as previously described in NA19 and updated here, and another reported for the first time in this and a companion paper, involving repeated calcining and weathering of MgCO$_3$-MgO, together with permanent storage or use of produced CO$_2$, and a third, dispersing small amounts of tailings over large areas of agricultural land. These are outlined in the next three sub-sections of the paper.
Weathering and Calcining for CO₂ Removal from Air,” filed on June 24, 2019. Magnesite undergoes thermal decarbonation (calcining) to form “caustic MgO” (amorphous or poorly crystalline MgO) + CO₂ at 500–900 °C (Mitina et al., 2015). This temperature is lower than for calcining of calcite and dolomite, reducing the energy required for heating. Caustic MgO produced by calcining has a small grain size and high surface area to volume ratio, which aids in later carbonation steps (Ebrahimi-Nasrabadi et al., 2013). Caustic MgO would be spread in a thin layer. Weathering of MgO will remove CO₂ from air to form more MgCO₃ and or hydrous Mg-carbonate minerals such as nesquehonite and hydromagnesite. CO₂ produced by calcining would be transported a short distance for permanent geological storage (as reviewed in NA19, Chapter 7, and Kelemen et al., 2019a), or sold for use (as an additive to building materials, for enhanced oil recovery, or for synthesis of hydrocarbons).

Geological magnesite deposits can be mined for this purpose, and this would probably be the least expensive approach. Worldwide magnesite reserves are ~8.5 Gt (Bray, 2020), containing ~4.4 Gt CO₂. Little of this is mined annually at present (~30 Mt per year). Large magnesite deposits are stratiform, chemical sediments, and/or chemically deposited concretions within sediments (Alçiçek, 2009; Fallick et al., 1991; Pohl, 1990; Zedef et al., 2000), which are relatively inexpensive to quarry and grind via surface mining. If ¼ of global magnesite reserves were mined and used for repeated cycles of CDR, extraction of CO₂, and re-use of MgO, this could provide a sink for ~1 Gt CO₂ per cycle.

The area requirement for this process depends on optimizing the thickness of MgO layers to be exposed for weathering, and the rate of CO₂ capture in specific climates, both of which are poorly known. However, here we provide an illustrative set of estimates. It is likely that caustic MgO produced by calcining of magnesite, reacts with atmospheric CO₂ + H₂O to form magnesite and/or hydrous Mg-carbonate minerals under conditions of surficial weathering as rapidly as brucite (Mg(OH)₂) does. Using the rate of carbonation of brucite in typical mine tailings, ~3 ⋅ 10⁻⁸/s (mass fraction per second, Harrison et al., 2012; NA19, Fig. 6.4, and references therein), yields roughly 100% conversion per year. Capture of 1 Gt CO₂/yr using a 10 cm thick layer of MgO powder, with a density of 2 tons/m³, would require an area of 4500 km². Using slightly different values, McQueen et al. (2020) derive an area requirement of 6100 km². To this can be added the footprint of power generation facilities required for calcination and other processes. Following protocols in NA19, Chapter 5, McQueen et al. (2020) estimate that natural gas combined cycle generation is used for electricity generation, this adds 15 km², for a total of ~6100 km². If instead solar energy is used for all processes, this requires an additional 1400 km², for a total of ~7500 km².

These area requirements are, of course, much larger than Washington DC. The requirement of ~6100 km², using natural gas power generation, is eight times greater than the area of the King Fahd International Airport in Saudi Arabia (776 km², Wikipedia, 2019), about half the size of the Nevada Test Site and the surrounding Nevada Test & Training Range in the United States (15,000 km², Wikipedia, 2019) and similar to the estimated 7000 km² required for removal of 1 Gt CO₂ from air using direct air capture with synthetic sorbents (NA19, Chapter 5). As additional points of comparison, for countries with large magnesite reserves and production, 6100 km² is 5.1% of the area of North Korea (2.3 Gt magnesite reserves), 0.2% of Saudi Arabia (significant magnesite production), 0.07% of China (1 Gt), and 0.04% of Russia (2.3 Gt). Faster rates, and correspondingly smaller area requirements, might be expected if the grain size of caustic MgO from calcining is substantially less than the grain size in typical mine tailings, ¹

3.2. Extended weathering of mine tailings

In addition to rapid carbonation of labile Mg, some olivine and a small amount of non-fibrous serpentine in ultramafic tailings will also undergo carbonation over decades of weathering. To calculate how much, we use kinetic data in NA19, the assumption of constant reaction rates (e.g., NA19, Fig. 6.3), a conversion rate for brucite and constant reaction rates (mass fraction per second) of 3 ⋅ 10⁻⁸, 3 ⋅ 10⁻¹⁰, and 3 ⋅ 10⁻¹², respectively. Cost based on $10/ton to mine and grind rock, and $1/ton every 10 years to stir tailings.

3.3. Repeated weathering and calcining of MgO-MgCO₃

Another way to reduce the cumulative volume of tailings required for CDR at >1 Gt/yr would be to “calcine” and re-use tailings over and over again. Here we provide an overview this idea, which is developed more fully in a separate paper (McQueen et al., 2020) and in a Patent Application 62/865,708, “Systems and Methods for Enhanced
and/or if the rate of MgO carbonation during weathering, per unit surface area, is significantly faster than experimentally measured for brucite so far. If thicker layers of MgO can be used in the weathering step, this would also reduce the area requirements.

If the entire global magnesite reserve were mined for CDR, this could remove about 4 Gt of CO2 from air per year, for perhaps 10 to 20 years. If caustic MgO produced by calcining cannot be recycled indefinitely, then to continue this procedure at the Gt-scale for additional decades would require use of other materials as feedstock. Similarly, from the outset, additional feedstock would be required to remove >4 Gt/yr. Though it is highly soluble in water, and thus probably not effective except in arid climates, the estimated reserves of Na2CO3 are about 25 billion tons (Bolen, 2020), of which about 60 wt% is Na2O. If all of this were used for CO2 removal from air, that would yield almost 10 billion tons of CO2 per year. Limestone (composed mainly of calcite (CaCO3) and dolomite (CaMg(CO3)2) constitute almost unlimited resources, but require relatively high calcining temperatures. Some alkaline industrial wastes may provide MgO, CaO and/or Na2O for repeated, enhanced weathering methods. Further analysis will be required to estimate the costs for using these materials.

Tailings from ultramafic rocks provide another alternative. As described above, a first stage of weathering would consume brucite and fibrous serpentine (labile Mg) plus CO2 to form a limited amount of magnesite. In addition, the first calcining step would modify serpentine via “dehydroxylation”, creating a material that combines rapidly with CO2 to form magnesite, as documented in a large number of studies (Balucan and Drullinger, 2013; Balucan et al., 2011; Dlugogorski and Balucan, 2014; Fedorovich et al., 2012; Ghoorah et al., 2014; Larachi et al., 2010; Larachi et al., 2012; Li et al., 2009; Maroto-Valer et al., 2005; McKelvy et al., 2004; O’Connor et al., 2005; Sanna et al., 2014). After a few calcining steps, the recycled solid feedstock would be composed mainly of caustic MgO plus inert SiO2 and iron oxides. We expect that, after several cycles, labile Mg content will approach the total Mg content of anhydrous ultramafic rock, typically 24 to 27 wt% (40 to 45 wt% MgO) and will capture 44 to 50 wt% CO2 per year. More generally, the US Geological Survey reports, “Resources from which magnesium compounds can be recovered range from large to virtually unlimited and are globally widespread” (Bray, 2020). In summary, from a practical perspective we expect that economic incentives, rather than the availability of feedstock, will limit the scale of CO2 removal from air via enhanced weathering with recycling of MgO, CaO and/or Na2O.

At the current utility scale grid electricity cost of $0.06/kWh (US Energy Information Administration, 2020), starting with magnesite feedstock, assuming natural gas combustion in an oxy-fired furnace for calcining, and accounting for CO2 emissions from mining, tilling and transportation, McQueen et al. (2020) calculate that this process might achieve CDR at $48 to $193/ton CO2 net removed, and produce a total amount of CO2 (both removed from air and captured from furnace emissions) at a cost of $24 to $98/ton. Thus, the cost of this method may be comparable to, or less expensive than, optimistic future projections of the cost of CO2 net removed via DACSS using similar parameters for energy costs, efficiency and so on (Katzer et al., 2018, $289/ton, NAI19, Table 5.10). For further discussion of estimated costs for MgO-looping, and comparison with proposed methods for DACSS, please see McQueen et al. (2020).

In conclusion, repeated re-use of magnesite or ultramafic rock tailings, to produce CO2 via calcining and MgO for CDR via weathering, could be cost competitive with DACSS, and has an area requirement similar to DACSS. It will be important to test the efficacy of MgO cycling, particularly the rate of CDR during weathering, and to optimize layer thickness, stirring methods (if any) and area requirements through a large number of relatively simple but somewhat time-consuming tests. Using feedstock rich in Mg, Ca and/or Na, looping technologies could support processes removing many gigatons of CO2 from air each year for decades to come. That said, since current, global CO2 utilization consumes 200 Mt/yr (based on ~80 Mt/yr in the US, Wilcox et al., 2020), removing gigatons of CO2 from the atmosphere would require extensive, reliable, long-term commitments of government support for permanent storage, or a dramatic change in demand for CO2-based products (e.g., Hepburn et al., 2019).

3.4. Diffuse dispersal of Mg- and/or Ca-rich material in soils and/or seawater

Rather than reducing the area footprint of material mined for CDR, another approach is to disperse it more widely. Gridding ultramafic or mafic basaltic rock reactants to smaller sizes than typical of mine tailings, and spreading them in agricultural soil, forest soil, or along beaches has been suggested as a means for carbon dioxide removal from air (e.g., Schuiling and Jorgensen, 2006). These ideas have recently been experimentally evaluated and reviewed in several papers (Beierling et al., 2018; Edwards et al., 2017; Hartmann et al., 2013; Kantola et al., 2017; Köhler et al., 2013; Köhler et al., 2010; Meysman and Montserrat, 2017; Montserrat et al., 2017; Moosdorf et al., 2014; Renforth and Henderson, 2017; Renforth et al., 2015; Rigopoulos et al., 2018b; Taylor et al., 2010; Taylor et al., 2016; ten Berge et al., 2012). Many of these studies use olivine as the reactant, because brucite and fibrous serpentine are not abundant in most candidate rock formations, fibrous serpentine (asbestos) is a health hazard, and most other serpentine minerals are slow to react at surface conditions. Some studies also consider basaltic lava as a reactant.

Carbon uptake in soils occurs through the interaction of air with dissolved alkalinity, which in some cases is known to release Ca at rates of 10−15 to 10−16 mol/cm2/s (Renforth et al., 2015). The reaction of seawater with olivine ground to about 1 μm has comparable rates (Köhler et al., 2013; Montserrat et al., 2017; Rigopoulos et al., 2018b). Note that studies of mineral addition to seawater do not generally invoke precipitation of carbonate minerals, but rather charge balance of dissolved Mg2+ and/or Ca2+ via dissolution of atmospheric CO2 as 2HCO3−. Using the approach of Renforth (2012), an energy cost of $0.05 to $0.15 per kWh, and $10/ton for mining and crushing olivine to tailings size, without accounting for capital costs, efficiency and so on, we derive a minimum cost estimate for this method of approximately $25 to $52/ton.

Returning our focus to processes that produce carbonate minerals, Renforth et al. (2009, 2015) have shown that carbonate precipitation in
soil at brownfield sites modified with demolition rubble is 3 times higher than the value of average C content in urban areas, corresponding to a storage potential of 30 ± 10^{-2} kg CO$_2$/m2. This increase in carbonate precipitation is attributed to the leaching of alkalinity from Ca-rich building materials that are pulverized during demolition to increase the reactive surface area and mix within the top layer of soil. Microbial processes may enhance weathering rates in soil, because microbial degradation of organic matter generates chelating agents and organic and inorganic acids. These microbial processes also accelerate mineral carbonation by increasing the local CO$_2$ partial pressure to 10–100 times atmospheric concentration (Power et al., 2010; Power et al., 2013a). These studies suggest that incorporating finely ground ultramafic and mafic rocks in agricultural soils or broadcasting rock material into the surface ocean may be sufficiently fast and inexpensive to be competitive with DAC systems. However, compared with the tailings methods described at the outset of this section, it may be difficult to measure and monitor the amount and fate of carbon stored in soils, beaches and seawater, and to distinguish natural carbon storage from that induced by engineered methods.

Carbon mineralization is often suggested as a method for mitigating the asbestos hazard posed by existing ultramafic mine tailings (e.g. McCutcheon et al., 2015); mining serpentinitized, asbestos-bearing peridotite for the purpose of CO$_2$ removal from air could be a double-edged sword. Another significant concern in agricultural applications is that minor constituents in peridotite and serpentinites, such as Ni and Cr, could accumulate in soil or water over time. Oxidized Ni and Cr compounds in water and food constitute significant health hazards at low concentrations (US Environmental Protection Agency, 2017). For example, Beerling et al. (2018) wrote: “Weathering experiments reveal a fast release of bioavailable Ni from olivines; ... experimental work with a soil column dosed with olivine suggested accumulation of Ni and Cr in the soil profile”. Similarly, Amann et al. (2020) report results of experiments on enhanced weathering of olivine added to agricultural soils indicating that “Ni and Cr are elevated in the soil solution, while Ni concentrations exceed the limits of drinking water quality”. In this context, basaltic rocks (containing higher molar ratios of (Mg + Ca)/Ni and (Mg + Ca)/Cr) may be more appropriate for use in agriculture. The addition of basaltic rock may also increase biomass yield, reduce nitrous oxide emissions, stabilize soil organic carbon content, replace material lost through soil erosion, and enhance drought, salinity, heat, pest and disease resistance of plants (Beerling et al., 2018).

On the other hand, Hamilton et al. (2018) found that “trace metals are not present at detectable levels within [ultramafic] mine pit waters”. These observations are consistent with our own, previously unpublished measurements of Ni and Cr concentration in surface, spring and well water affected by natural weathering of ultramafic rocks in Oman (Table 1). As noted by Hamilton et al., the difference between the observations in this paragraph, and data on accumulation in soils, is probably due to the buffering capacity of ultramafic rocks and tailings, in which alteration assemblages contain abundant mineral hosts for Ni and Cr.

4. In situ CDR

In situ CDR – via circulation of CO$_2$-bearing surface water in appropriate formations to form subsurface carbonate minerals – has much lower surface area requirements compared to surficial CDR, but remains a largely speculative alternative.

Kinetic studies (reviews in NA19, Kelemen et al., 2011, Gadikota et al., 2020) suggest that in situ carbon mineralization in ultramafic rocks (with high molar Mg to Si ratios) and in glass-rich basaltic lava flows can form carbonate minerals accounting for tens of weight percent of CO$_2$ in the solid phase within a few years, when CO$_2$ is supplied by flowing pore fluid in an open system, over extensive rock volumes around individual boreholes. Experimental studies of reaction kinetics are consistent with the results of pilot experiments on carbon mineralization in mafic and ultramafic formations. For CDR, the challenge is to deliver CO$_2$ at a significant rate in order to take advantage of the relatively rapid carbon mineralization reactions.

It is important to add that a study estimating in situ carbon mineralization rates in a specific sandstone in a depleted oil reservoir (Benson et al., 2005) led to the widespread impression that this process is so slow that it would not become a significant factor for large scale storage of CO$_2$ until thousands of years after injection. However, this result is not applicable to carbon mineralization in basaltic lavas and ultramafic rocks, which can remove almost all CO$_2$ from circulating aqueous fluids in less than a year (Fig. 8).

4.1. In situ carbon mineralization in basalt

Storage of CO$_2$ captured elsewhere is not the focus of this paper. However, it is important to review results of field-scale, pilot experiments on storage of CO$_2$ via carbon mineralization. And, while the focus of this paper is not on carbon mineralization in basalt, we summarize the results of pilot experiments on storage in basalt, because there have been none in peridotite. Moreover, proposed hybrid methods for CDR, involving partial enrichment of CO$_2$ using direct air capture with synthetic sorbents (DACSS) coupled with injection of CO$_2$-rich water for in situ carbon mineralization (Section 5, Fig. 11 and associated text), very closely resemble the methodology used in the ongoing CarbFix experiment in Iceland and the recently completed Wallula Project in Washington State. Both involved extensive characterization of the composition, structure, and hydrology in thick sequences of basaltic lavas, followed by injection of CO$_2$-rich fluids to investigate storage in pore space and as solid carbonate minerals.

4.1.1. The Wallula project

The Wallula project (e.g., McGrail et al., 2017a; McGrail et al., 2017b; McGrail et al., 2014) injected 977 tons of water-saturated, supercritical CO$_2$ at a depth of 828 to 886 m into a relatively permeable horizon in the Columbia River basin over a period of three weeks in summer 2013. Extensive surface monitoring and borehole observations for two years revealed no leakage of CO$_2$ from the highly permeable horizon into which it was injected. It is not known how much of the injected CO$_2$ is now stored as supercritical CO$_2$-rich fluid, dissolved in aqueous fluid, and/or stored in solid carbonate minerals. However, side cores from the main borehole wall revealed the presence of newly formed carbonate minerals precipitated by reaction of the basalt with injected CO$_2$, consistent with the composition of water in the borehole. Our understanding is that the project is complete with no plans for future work at this time.

4.1.2. The CarbFix experiment

The ongoing CarbFix experiment (e.g., Aradottir et al., 2011; Gislason et al., 2010; Gunnarsson et al., 2018; Matter et al., 2011; Matter et al., 2016; Snæbjörnsdóttir et al., 2017) is conducted by the geothermal power company Reykjavik Energy, together with a consortium of research scientists. In addition to investigating CO$_2$ storage, this project has the goal of storing H$_2$S co-produced with geothermal fluid at a specific power plant. Phase I of CarbFix injected about 200 tons of CO$_2$ into highly permeable, fractured basalts at a depth of 400–800 m (ambient temperature ~18–33 °C, porosity ~10%). At this depth, CO$_2$ solubility in water is not high, and CO$_2$-rich fluids are not supercritical. As a result, the project employed the novel technique of separately injecting H$_2$O and CO$_2$ with proportions adjusted to ensure complete solubility of CO$_2$ in aqueous fluid at the target depth. This technique is known as solution trapping. In CarbFix Phase I, water and CO$_2$ (±H$_2$S) were injected separately to a depth of 330–360 m, with an CO$_2$/H$_2$O ratio ~3.5 wt%. At this depth, CO$_2$ was “sarged” into the water as tiny bubbles, which were sufficiently small to be entrained in the descending water until they were entirely dissolved (Sigfusson et al., 2015).
CarbFix used a tracer technique, injecting SF₆ and other conserved tracers together with ¹⁴C-rich CO₂. The tracers allowed researchers to see the injected fluid pulse arrive at production wells (Fig. 9), and to monitor the ratios of total carbon concentration, and ¹⁴C, to the tracer concentrations. After an initial small pulse in ¹⁴C at the production well, carbon concentration and ¹⁴C in carbon returned to near-ambient levels. Carbon/tracer ratios, and ¹⁴C/tracer ratios indicated >95% loss of carbon along the ~500 m flow path from injection to production well, attributed to carbon mineralization.

CarbFix Phase II is continuing with the methodology of Phase I, but with a deeper and wider range of injection depths (~1500 m at higher temperature), a reduction of the CO₂ injection pressure, and a large increase in CO₂ flux. Cumulatively, >20,000 tons of CO₂ have been injected, with tracer results continuing to indicate nearly complete loss of carbon along a ~2000 m flow path (Snæbjörnsdóttir et al., 2017). Phase II is close to the target scale for routine operation, accommodating most of Reykjavik Energy’s CO₂ emissions at a specific geothermal power plant, and also disposing of H₂S produced at the power plant.

We estimated that the CO₂ uptake rate to date, in mass fraction per second, has been ~10⁻¹¹/s over three years (NA19). This figure corresponds to ~5 10⁻⁹ mol/m²/s if the rock reactants can be approximated as spheres 1 mm in diameter. This rate is similar to those calculated using experimental data on plagioclase feldspar dissolution (Fig. 2) and experimental rates for full basalt carbonation (NA19). It is possible that the initial grain size of the most reactive minerals is <1 mm and/or that the surface area per grain is larger than it is for spheres. If so, the rate of CO₂ consumption in the CarbFix experiment may be limited by CO₂ supply, rather than the local reaction rate, and could be substantially higher if CO₂ were injected more rapidly.

The CarbFix methodology can be seen as a two-stage technique, first “solution trapping” of CO₂ dissolved in water at depth, almost in impermeable caprock to avoid CO₂ leakage. With an estimated cost of ~$20 to $50 per ton (Gunnarsson et al., 2018) this process costs ~$10 to $40/ton CO₂ more than injection of supercritical CO₂ into subsurface pore space for storage (NA19, Chapter 7), and could be a locally preferred option in some regions. This prospect opens vast expanses of potential basalt reservoirs for solid CO₂ storage.

There has been little focus on CDR via in situ carbon mineralization in basalt formations, due to relatively slow laboratory rates of carbon mineralization in basalt and minerals common in basalt (particularly plagioclase feldspar) compared to ultramafic rocks and their common minerals (e.g., olivine, asbestiform chrysotile, and brucite; Fig. 2 and NA19). However, the potential for CDR via rapid carbon mineralization in basaltic glass should not be overlooked.

4.2. In situ carbon mineralization in peridotite and other ultramafic rocks

4.2.1. Geologic examples

Geologic evidence for relatively rapid, natural carbon mineralization underlies proposed designs for engineered CDR systems. The classic paper of Barnes and O’Neil (1969) demonstrated that mantle peridotite near Earth’s surface undergoes low temperature hydration (serpentinization) and carbonation at appreciable rates. The best studied natural example of this process is the alteration of mantle peridotite in the Semail ophiolite (e.g., Neal and Stanger, 1985), a block of oceanic crust and mantle peridotite thrust onto the Arabian continental margin from 96 to 70 million years ago, now exposed by faulting and erosion in northern Oman and the eastern United Arab Emirates. Present-day carbon mineralization forms carbonate veins in fractures, within partially serpentinized peridotites at ambient, near-surface temperature and pressure, and large travertine terraces of chemically-deposited calcite (CaCO₃) on the surface. Ongoing rates of carbonation, constrained by ¹⁴C geochronology and other data, are on the order of 1 g CO₂/m²/yr (1000 tons/km²/yr) in a weathering horizon that may have an average depth of ~15 m (Kelemen et al., 2008; Kelemen et al., 2011; Mervine et al., 2014; Streit et al., 2012). Carbonates in the rock matrix and in veins filling fractures constitute about 1% of peridotite in outcrop, on average.

Carbonate veins are abundant in outcrops of mantle peridotite (e.g., Fig. 6.11 in NA19 Kelemen and Manning, 2015, Kelemen and Matter, 2008, Kelemen et al., 2011). Peridotite outcrops worldwide are also hosts to alkaline springs, rich in dissolved CaOH⁺, with little dissolved Mg and C (e.g., Barnes et al., 1967; Barnes and O’Neil, 1969; Barnes and O’Neil, 1971; Barnes et al., 1978; Clark and Fontes, 1990; Falk et al., 2016; Kelley et al., 2001; Launay and Fontes, 1985; Mervine et al., 2014; Neal and Stanger, 1985). Alkaline spring waters are interpreted
as products of precipitation of Mg-carbonate minerals during reaction of groundwater with peridotite, together with dissolution of Ca-bearing silicates in peridotite (e.g., pyroxenes and plagioclase). At the surface, alkaline spring water combines directly with CO₂ from air to form calcium carbonate (CaCO₃) in travertine terraces (e.g., NA19, Fig. 6.12). ¹⁴C data indicate that most of these large travertine deposits form in <50,000 years (Kelemen et al., 2019; Kelemen and Matter, 2008; Kelemen et al., 2011; Mervine et al., 2014). Similarly, ¹⁴C data, together with conventional oxygen isotope mineral-fluid thermometry, clumped isotope thermometry, and phase equilibrium calculations indicate that carbonate veins in Oman peridotites are forming in the shallow subsurface as a result of ongoing weathering (e.g., Barnes and O’Neil, 1969; Kelemen et al., 2019; Kelemen and Matter, 2008; Kelemen et al., 2011; Malvoisin et al., 2020; Neal and Stanger, 1985; Streit et al., 2012). Thermodynamic modeling indicates that the alkaline spring waters in peridotite hosted catchments in Oman, California, Italy, and other localities form as a result of ongoing, subsurface precipitation of carbonate minerals + serpentine (e.g., Bruni et al., 2002; Paukert et al., 2012).

Fully carbonated peridotites (listvenites) are exposed in Oman. In listvenites, all Mg and Ca have combined with CO₂ to form carbonate minerals, while Si remains in the pure SiO₂ minerals quartz, chalcedony, and/oropal in Oman (Beinlich et al., 2020; Falk and Kelemen, 2015; Kelemen et al., 2020; Laciniska et al., 2014; Nasir et al., 2007; Stanger, 1985; Wilde et al., 2002) and elsewhere around the world (e.g., Abuklut et al., 2006; Aze et al., 2019; Beinlich et al., 2014; Beinlich et al., 2012; Borojjeviš Šotarič et al., 2014; Boschi et al., 2009; Gahlan et al., 2018; Garcia del Real et al., 2016; Halls and Zhao, 1995; Hansen et al., 2005; Menzel et al., 2016; Quesnel et al., 2016; Quesnel et al., 2013; Scarsi et al., 2018; Sofiya et al., 2017; Tominaga et al., 2017; Ulrich et al., 2014). In Oman, these listvenites formed about 90 million years ago at ~100–200 °C, in the presence of fluids with high P (CO₂) (Beinlich et al., 2020; de Obeso et al., 2017; Falk and Kelemen, 2015; Godard et al., 2017; Kelemen et al., 2017; Manning et al., 2017), similar to conditions proposed in situ carbon mineralization. The presence of listvenites shows that there are natural pathways to complete reaction in this temperature range, despite potential negative feedbacks discussed in the next few paragraphs.

4.2.2. Feedbacks

In natural and engineered systems, rapid and extensive in situ carbon mineralization could be inhibited by negative feedback processes. Loss of CO₂ by reaction along the initial stages of a reactive fluid pathway could limit supply of CO₂ to rocks more distal from an injection well. Filling of pore space with reaction products may reduce permeability and armor reactive surfaces, forming a solid diffusive boundary layer between fluid and solid reactants. These negative feedbacks may commonly cause peridotite carbonation (and hydration) to be self-limiting, preserving lithologies in outcrop that are far from equilibrium with surface conditions.

The reactions outlined in the Introduction all involve large increases in the solid volume, via addition of CO₂ (±H₂O, ±O₂) from the fluid into the solid phases coupled with the low density of solid products relative to solid reactants. If large volumes of other components were dissolved from the rock volume, then perhaps the net change in solid volume would be small. However, nearly constant ratios of major cations (Mg/Si/Fe), compared to H₂O- and CO₂-free peridotite reactants, together with the results of thermodynamic calculations, indicate that there has been very little dissolution and transport of material out of the rock system (de Obeso and Kelemen, 2018; de Obeso et al., 2017; Kelemen et al., 2017; Malvoisin, 2015) consistent with decades of prior studies (e.g., Coleman and Keith, 1971) and with recent textural studies (Klein and Le Roux, 2020, Malvoisin et al., 2020). Thus, carbonation of ultramafic rocks, with or without coconitam hydration and oxidation, generally involves a large increase in the solid volume.

Near-surface peridotites have fracture-dominated porosity, on the order of ~1 vol%. In such a limited porosity network, small increases in the solid volume, and precipitation of minerals could have large, negative impacts on permeability, potentially limiting carbon mineralization in peridotite reacting with CO₂-rich fluids. Nevertheless, natural alkaline springs, formed as a result of subsurface peridotite carbonation and hydration, persist for tens of thousands to hundreds of thousands of years in Oman and on the seafloor (Früh-Green et al., 2003; Kelemen and Matter, 2008; Kelemen et al., 2011; Ludwig et al., 2006; Ludwig et al., 2011; Mervine et al., 2014; Mervine et al., 2015), indicating that the underlying reactive flow network does not clog or exhaust reactive surface area on this time scale. Similarly, as noted in the previous subsection, 4.2.1, ¹⁴C data, together with conventional oxygen isotope mineral-fluid thermometry, clumped isotope thermometry, and phase equilibrium calculations indicate that carbonate veins in Oman peridotites are forming in the shallow subsurface as a result of ongoing weathering. And, the presence of listvenites indicates that complete carbonation can occur.

A positive feedback mechanism that may explain the persistence of geologically rapid peridotite carbonation, extending over long times and to 100% completion, is “reaction-driven cracking” in which volume expansion due to carbonation causes large differential stresses, which in turn cause fractures, maintaining or enhancing permeability and reactive surface area (e.g, NA19, Fig. 6.14, Evans et al., 2018, Evans et al., 2020, Jamtveit et al., 2008, Jamtveit et al., 2009, Kelemen and Hirth, 2012, MacDonald and Fye, 1985, O’Hanley, 1992, Rudge et al., 2010, Ulven et al., 2014a, Ulven et al., 2014b). Available chemical potential energy to drive reaction-driven cracking in peridotite undergoing carbonation or hydration is large, more than sufficient to fracture rocks (Kelemen and Hirth, 2012). The overall concept seems simple enough, and this process has been observed in peridotite carbonation experiments (Zhu et al., 2016) and particularly well documented in analog experiments on hydration of MgO (Zheng et al., 2019; Zheng et al., 2016).

Nevertheless, in other experimental tests of olivine carbonation and hydration volume change and fractures were not observed (van Noort et al., 2017), and permeability dropped with increasing reaction progress (Andreani et al., 2009; Godard et al., 2013; Hövelmann et al., 2012; Lisabeth et al., 2017a; Lisabeth et al., 2017b; Malvoisin et al., 2017; McCollom et al., 2016; Plümper et al., 2012; Velbel, 2009) – may also play a role in sustaining permeability and fluid flow. Perhaps complete carbonation in natural systems is relatively slow, and thus cannot be engineered on a human time scale, as suggested by van Noort et al., 2017. However, in the competition between (i) volume expansion and stress accumulation, and (ii) processes that relax elastic stresses such as viscous flow or frictional sliding along existing fractures, it seems likely that reaction-driven cracking happens when the rates of reaction and volume change are maximized.

In summary, despite the initial, apparent simplicity of the feedbacks in peridotite carbonation, understanding them and developing...
predictive hypotheses validated by experimental and field data is an increasingly complex and interesting research field. Continued research on this topic is justified by geologic observations of fully carbonated peridotite. Natural systems do it, and it is likely to be possible to design engineered systems that emulate the natural process. Moreover, understanding of the feedbacks that lead to reaction-driven cracking could be applied to geothermal power generation, in situ mining for, e.g., uranium, and extraction of oil and gas from tight reservoirs, as well as to CO2 capture and storage. In other applications, it is desirable to prevent reaction-driven cracking, for example in well-bore cement and in caprocks above storage reservoirs for supercritical CO2 fluid. Ongoing research seeks to outline a “phase diagram” delineating the conditions for reaction-driven cracking, and the surrounding parameter space dominated by clogging and armoring of reactive surfaces.

4.2.3. Engineered methods for CDR via carbon mineralization

Carbon dioxide removal from air, in addition to solid storage, may be achieved using engineered methods that closely emulate natural carbon mineralization in peridotite. During weathering, shallow ground water, equilibrated with atmospheric CO2 reacts with peridotite in the subsurface, in a system closed to CO2 exchange with the atmosphere. This quickly reduces dissolved carbon concentrations to zero, via precipitation of Mg- and Ca-carbonate minerals in veins. Along the reaction path, pH rises to 11.5 or more, and the concentration of dissolved Ca²⁺ increases to ~400 ppm. When these alkaline waters react the surface, they combine with atmospheric CO₂ to form calcite, CaCO₃, in some places creating extensive travertine deposits (e.g., Barnes and O’Neil, 1969; Barnes et al., 1978; Clark and Fontes, 1990; Kelemen and Matter, 2008; Kelley et al., 2001; Launay and Fontes, 1985; Mervine et al., 2014).

Engineered CO₂ removal from air could begin with production of C-depleted alkaline water from existing aquifers in peridotite, to form travertine at the surface. The amount of CO₂ that could be captured via this simple and relatively inexpensive method is uncertain, because the size, permeability, productivity and recharge rates of alkaline, peridotite-hosted aquifers are unknown. This represents an obvious, relatively low-cost research opportunity.

In parallel, alkaline aquifers could be replenished via enhanced circulation of surface water through subsurface peridotite formations. Kinetic data yield empirical predictions of olivine carbonation rates (mass fraction olivine ≤75 μm) such as (Kelemen and Matter, 2008):

\[
\Gamma = 1.15 \times 10^{-5} (P(CO_2) \text{ bars})^{1/2} \exp[-0.000334(T^\circ \mathcal{C} - 185)^2] \tag{9}
\]

an expression that is consistent with more recent experimental results (Eikeland et al., 2015; Gadikota et al., 2014; Gadikota et al., 2020). Rather than guess the effective grain size (and/or fracture spacing) in natural peridotite aquifers, we use observed rates in the near-surface weathering horizon as a calibration point, calculate relative rate enhancements using this expression, and derive a scaled rate from the product of the observed rate and the relative rate enhancement. This approach indicates that olivine-rich peridotite could, in principle, consume >1 Gt CO₂/km²/yr peridotite/yr, at temperatures greater than ~150 °C, and CO₂ partial pressures greater than ~60 bars (Kelemen and Matter, 2008). Even at somewhat lower temperatures and CO₂ pressures, ~100 °C, carbon mineralization in peridotite reacting with aqueous fluid injected into a 10⁷ m³ volume of rock around a borehole at 3 km depth could achieve rates of ~0.05 Mt CO₂/yr for fluid saturated in air (400 ppmv CO₂) at 300 bars, or 0.5 Mt CO₂/yr for fluid saturated in air pre-enriched by partial DACSS to 5 wt% CO₂ at 300 bars. However, under some circumstances these kinetically achievable rates are likely to be limited by CO₂ supply, due to the costs and physical limitations of injecting fluid saturated peridotite aquifers at depth.

Carbon-species are diluted in water equilibrated with air at 1 bar. For example, there is ~100 ppm CO₂ equivalent (all dissolved inorganic C treated as CO₂) in seawater (Zeebe and Wolf-Gladrow, 2001) and in Mg-HCO₃-rich groundwater in peridotite aquifers (e.g., Bruni et al., 2002; Canovas et al., 2017; Paukert et al., 2012; Paukert Vankeuren et al., 2019). As a result, every penny spent pumping a given mass of water corresponds to ~$100 for the equivalent mass of CO₂, because $0.01 per mass of water must be divided by the mass fraction of 100 ppm CO₂ (10⁻⁴) in that mass of water in order to calculate the cost per equivalent mass of CO₂. Thus, when using in situ carbon mineralization to capture CO₂ from dilute, aqueous solutions, it may be best to rely on thermal convection to drive fluid circulation. In this context, the temperature contrast between surface water and the target aquifer, and the permeability of the subsurface peridotite aquifer, are critical variables. Calculations presented by Kelemen et al. (2016) have been improved and updated as follows. Steady state, constant radial flux of fluid from a porous (fractured) aquifier into a borehole (Dake, 1978) can be quantified as

\[
\dot{Q} = k2\pi h \mu \frac{dP}{dr} \text{ in a cylinder, so that } \frac{dP}{dr} = \frac{Q\mu/k2\pi h_P}{r} \tag{10}
\]

and

\[
P_{wf} = P_{wf} - P_0 = \frac{Q\mu/k2\pi h_P}{r} \ln \left(\frac{r_w}{r} \right) \tag{11}
\]

where \(Q \) is flow (m³/s), \(k \) is permeability (m²), \(A \) is area (m²), \(\mu \) is viscosity (Pa s), \(P \) is pressure (Pa), \(r \) is radial distance from the borehole (m), \(h \) is vertical distance or height (m), \(dP/dr \) is the radial pressure gradient from the borehole into the surrounding rock (Pa/m), \(h_p \) is the height of an interval in the borehole with perforated casing, \(P_{wf} \) is the fluid pressure at the bottom of the borehole, \(r_w \) is the radius of the borehole, \(P_s \) is the far-field fluid pressure in the formation, \(r_c \) is the critical radius at which the far-field fluid pressure is unchanged by the borehole, and \(P_{wf} \) is the excess fluid pressure required to produce a given flux. Ignoring transient effects on permeability due to drilling, this
expression can be used to estimate the excess fluid pressure required to achieve a given flux into or out of the borehole.

In addition, friction in the pipe can limit fluid flux. The additional pressure required to offset this frictional head loss (C.E.D. Engineering, 2019, Moody, 1944) is

$$P_f = \mu \log \left(\frac{h_b}{(2r_p)} \right) \left(\frac{Q}{R \sqrt{2g}} \right)$$

(12)

in which \(\mu \) is the average fluid density (half the sum of minimum and maximum densities), \(g \) is the acceleration due to gravity (m/s²), and \(f \) is a friction factor. The friction factor is first estimated for completely turbulent flow as

$$f_t = \left[1.14 + 2 \log_{10} \left(\frac{2r_p}{\varepsilon} \right) \right]^{-2}$$

(13)

and then iteratively refined as

$$f_{t, n+1} = \left[2 \log_{10} \left(\frac{\varepsilon / 2r_p + 5.10}{R_n / (n+1)} \right) \right]^{-2}$$

(14)

in which \(\varepsilon \) is a pipe roughness constant (4.5732 \(\times \) 10⁻⁵ m for steel pipe) and \(R_n \) is the Reynolds number

$$R_n = 2 \mu Q / (\rho_0 r_g)$$

(15)

Fluid pressure to achieve a given flux can result from thermal buoyancy, or can be imposed by pumping. Thermal buoyancy can be quantified as

$$P_b = \Delta \rho g h_b$$

(16)

in which \(P_b \) is the pressure due to buoyancy, \(\Delta \rho \) is the difference in fluid density over a given temperature interval (kg/m³), and \(h_b \) is the height of an interconnected fluid column, which is the depth of the borehole for our purposes.

The densities of cold and hot fluid as a function of temperature and pressure were estimated assuming that the circulating fluid is pure water, as

$$P = \rho_0 c_{c, 1 \text{ bar}} \left(1 + \beta (T_c - T_0) \right)$$

(17)

in which \(\rho_0 c_{c, 1 \text{ bar}} \) is 999.8 kg/m³, \(\beta \) is the coefficient of thermal expansion, and \(E \) is the bulk modulus. \(\beta \) and \(E \) were fit to data from Engineering Toolbox (2009) over the relevant range of temperature and pressure (0 to 140 °C, 1 to 300 bars) as

$$\beta = -5.6643 \times 10^{-5} + 1.5452 \times 10^{-4} T_c - 1.3299 \times 10^{-3} T_c^2 + 6.038 \times 10^{-10} T_c^3$$

(18)

$$E = 2.0122 \times 10^9 + 1.3778 \times 10^7 T_c - 1.9648 \times 10^5 T_c^2 + 6.5455 \times 10^3 T_c^3 + 7 \times 10^5 P_{\text{bars}}$$

(19)

There are many areas where the temperature at 3 km depth reaches or exceeds 120 °C (e.g., Blackwell et al., 2011) providing a source of thermal buoyancy. For example, for an average annual surface temperature of 10 °C and 120 °C at 3 km, \(\Delta \rho \approx 100 \text{ kg/m}^3 \).

When \(P_b > P_f + P_p \), thermal buoyancy is more than sufficient to produce a given flux, and no pumping is necessary. Otherwise, pumping is required to enhance the borehole fluid pressure by

$$P_p = P_f + P_f - P_b$$

(20)

where \(P_p \) is the pump pressure. The power, \(\psi \) (W) required to produce the required pump pressure is

$$\psi = Q P_p$$

(21)

Air saturated, Mg-HCO₃-rich surface waters in peridotite catchments contain ~100 ppm CO₂ by weight (all dissolved inorganic carbon calculated as CO₂; e.g., Barnes and O’Neil, 1969; Neal and Stanger, 1985; Bruni et al., 2002; Paukert et al., 2012; Paukert Vankeuren et al., 2019). Similarly, using EQ3/6 software (Wolery, 1979; Wolery, 1992), we calculate that reaction of surface water with peridotite at the surface can increase the CO₂ content to ~200 ppm, after which the water will saturate in Ca-Mg-carbonate minerals. Continued reaction during circulation through subsurface porosity consumes almost all of the dissolved carbon and magnesium to produce Mg-bearing carbonates plus hydrous Mg-silicates such as serpentine. This reaction process also dissolves Ca silicates, producing alkaline waters rich in Ca(OH)₂. Upon return to the surface, dissolved Ca(OH)₂ in alkaline water reacts with atmospheric CO₂ to produce CaCO₃ (solid calcite) + H₂O, consuming 1 mol of atmospheric CO₂ per mole of dissolved Ca, and/or dissolved Ca (HCO₃)₂, consuming 2 mol of CO₂ per mole of dissolved Ca. Using the thermodynamic code PHREEQC (Parkhurst and Appelo, 2013), with an alkaline fluid containing 9.44 mmol dissolved Ca per kg of water and a pH of 12, these reactions are estimated to consume ~400 to 800 ppm atmospheric CO₂ per kg of alkaline water returned to the surface. Thus, the total consumption of atmospheric CO₂ via circulation of surface water through subsurface peridotite, followed by return of CO₂ depleted water to the surface, is 0.0005 to 0.0010 kg CO₂/kg surface water.

Permeability in fractured, crystalline rock near the Earth’s surface varies widely on many spatial scales, with values ranging from 10⁻¹² to 10⁻¹⁷ (e.g., Ingebritsen and Manning, 2010; Manning and Ingebritsen, 1999; Rutqvist, 2015). Studies of the stimulated heat reservoir for the Soultz geothermal experiment yield values in the high end of this range (Vogt et al., 2014; Vogt et al., 2012; Zhang et al., 2014). Permeability in partially serpentinized, fractured peridotite may average 10⁻¹⁴ m² on the catchment scale (Dewandel et al., 2005), 10⁻¹² m² on scales of 10s to 100s of meters near the surface and/or in tectonically fractured rock, and can be 10⁻¹² to 10⁻¹⁵ m² on the mm to cm scale in rocks with microscopic serpentine veins but without macroscopic fractures, based on numerical simulations of flow through porosity imaged with synchrotron X-ray tomography (Waiching Sun, personal communication) and measurements of porosity plus dry and seawater-saturated conductance (Oman Drilling Project, Initial Results, 2019). For CO₂ removal from air and solid storage via in situ carbon mineralization, it would be wise to prospect for relatively high permeability volumes within a peridotite formation.

These relationships, a power cost of $0.06/kWh (current, utility-scale, onsite, no storage, cost from DOE Solar Energy Technologies Office, 2017), and the assumption that production of energy is nearly free of CO₂ emissions, can be used to estimate the cost to remove a given mass of atmospheric CO₂ per year via in situ carbon mineralization, using a borehole to produce water from a subsurface peridotite aquifer containing an existing CO₂-depleted, Ca-rich alkaline fluid. We assume that the aquifer is sufficiently large, and/or that physical (and chemical) recharge of the borehole from the aquifer can keep pace with the rate of fluid production, at steady state. Field experiments will be essential to evaluate this assumption.

In the example calculation illustrated in Fig. 10, we use a permeability range of 10⁻¹² to 10⁻¹⁴ m², a surface temperature of 10 °C, a borehole depth of 3000 m with a diameter of 0.33 m (13 in.) and a cost of $3 M (Augustine et al., 2006; Bloomfield and Laney, 2005; Shevenell, 2012), a production interval or intervals with a total height \(h_p \) of 1000 m, a bottom temperature of 120 °C, a basal fluid pressure of 300 bars, a critical radius, \(r_e \), of 1000 m, and CO₂ consumption at 0.0009 kg CO₂/kg produced water (0.09 wt% CO₂). The approximate values resulting from this calculation suggest that CO₂ removal from air, at up to 10,000 tons per year per borehole, could be achieved at a cost less than $100/ton CO₂ via circulation of surface water for peridotite formations with a permeability greater than or equal to 10⁻¹² m².

Scaling up this process to remove and store 1 Gt CO₂ from air per year is possible, but daunting. At 1000 to 10,000 tons CO₂ per well per year, this would require 100,000 to 1 million wells. While at first this seems inconceivable, it is similar to the ~1 million, currently producing
oil and gas wells in the United States (US Energy Information Administration, 2018) providing yet another example of the common result that disposing of fossil fuel emissions requires infrastructure with a scale similar to that of fossil fuel extraction.

The space requirements for this process are large. After drilling and well completion, each well head might only require 100 m2, leading to a total area estimate of only 10 to 100 km2 to capture and store 1 Mt CO$_2$/yr. However, to be effective, we estimate that wells must be at least 250 m apart, yielding an area requirement of 62,500 m2 per well, and a total area estimate of 6250 to 62,500 km2 for 1 Mt CO$_2$/yr. For comparison, the exposed outcrop area of mantle peridotite in Oman and the UAE is \sim5000 km2, and the global outcrop area of peridotite on land is probably less than \sim25,000 km2, while the outcrop area of peridotite on the seafloor flanking slow-spreading mid-ocean ridges may be $\gg 400,000$ km2 (Kelemen et al., 2011).

5. Hybrid methods: DACSS + carbon mineralization

In this section we explore the potential for hybrid approaches combining incomplete enrichment of air to 5 wt% CO$_2$ using DACSS, combined with in situ carbon mineralization, with the idea that these hybrids may be less expensive, in terms of energy and area requirements, than either of the end-member technologies alone.

Previous workers have considered CDR using DACSS, combined with carbon mineralization in basalt for storage of CO$_2$, perhaps in remote areas such as Kerguelen Island in the southern Indian Ocean (Goldberg et al., 2013), where renewable energy resources (wind, solar) are abundant, but there is a limited demand for electricity. It seems to us that this approach combines expensive DAC technology, enriching gas to high CO$_2$ concentrations, with a relatively expensive storage technology (carbon mineralization is perhaps twice as costly as storage of supercritical CO$_2$ in subsurface pore space). Thus, we think production of concentrated CO$_2$ via DACSS, powered by renewable energy in remote areas, is more likely to be combined with storage in pore space, or with export of CO$_2$ for use elsewhere. In addition to producing a saleable commodity, the latter option provides a practical way to store and eventually export surplus renewable energy, e.g., solar energy on the Arabian Peninsula.

However in general, the work required for DAC is proportional to the end purity of the output gas or fluid, and to the proportion of CO$_2$ removed from air (e.g., Wilcox et al., 2017). For an end-purity of 2.5 to 10%, the work required (and thus the power cost) is \gg2.5 times lower than for an end purity \sim95%. Also, for low end-purity, there is very little dependence on the proportion removed, which can thus be \gg90% with little added cost.

To provide initial, quantitative estimates of the associated cost savings, here we evaluate the cost of DACSS for a technology-agnostic system to take CO$_2$ from atmospheric concentrations (400 ppm by volume, 620 ppm by weight) to 3 vol% (\sim5 wt%). Building on the analysis presented by Wilcox et al. (Wilcox et al., 2017) the model from which these costs were derived is based on an exponential regression associated with the relationship between outlet purity and percent capture of the system and energy, and then subsequently the linear relationship between the energy and the CAPEX of a given system. The energetic requirements were correlated to the those of well-documented carbon capture systems today as a function of the outlet purity and the percent

The energy was then divided into the required thermal energy (80% of total energy requirements) and electric energy (20% of total energy requirements). Thermal energy is often required for sorbent regeneration, while electric energy is typically needed for fans, pumps, and vacuum equipment. Based on the energy resource, the energy-specific operating costs of the system were then determined. The capital cost of the system was correlated to the operating energy (and cost). This allowed for an approximation of the annualized capital. Finally, the maintenance and labor operating costs were developed consistent with the analysis in NA19, Chapter 5, where the maintenance cost is 3% of the total capital requirements and the labor cost is 30% of the maintenance cost.

For a case using natural gas and grid electricity, with the same heat and electricity costs as used for MgO looping in McQueen et al. (2020), in turn almost 100% consistent with those used in NA19, Chapter 5, the cost of 60% capture at 3% outlet purity is $70/ton CO$_2$ captured and 92/ton CO$_2$ net removed.\footnote{Within NA19, Chapter 5, the costs associated with solid sorbent DAC are reported as $88–$228/ton CO$_2$ captured and vary from $89–$887/ton CO$_2$ net removed (based on varying energy resources for thermal energy and electricity requirements). These costs are based on capturing 60–75% CO$_2$ from air at 99% purity. The net removed cost for the same conditions, presented here ($>$314/ton CO$_2$) is substantially higher than $89/ton CO_2$, which corresponds to cases in which solar electricity and solar-based thermal energy are used to meet the energy requirements, or in which nuclear energy is used to meet both electricity and thermal requirements. In the NA19 solid sorbent analysis, the authors used a wide variety of parameters for inputs such as adsorbent cost, lifetime, capacity, air velocity, adsorption/desorption time, mass transfer coefficient, etc., to develop five different scenarios. The values reported for solid sorbents in NA19, Table 5.11 correspond to the range from the low-cost scenario to the high-cost scenario. The low cost scenario used a combination of low-cost inputs (i.e., lower adsorbent cost, higher adsorbent capacity, longer adsorbent lifetime, etc.) that may not all be physically achievable in the same DAC system. When the technology is deployed and operating, these parameters can be tested. Meanwhile, the lower-bound estimates reported in NA19 may be considered long-term targets, but are not the costs realized of DAC today nor likely over the next decade. Learning by doing will allow for the focused RD&D efforts that will hopefully lead to the realization of the lower-bound estimates of DAC. Many of the cost reductions embodied in the NA19 low-cost scenario ($89/ton CO_2$ net-removed, compared to $>$314/ton in Table 2) would also reduce the cost for enrichment to 5 vol% reported here ($75/ton in Table 2). Further discrepancies between the values in Table 2 and those in NA19 may result from the calculation of the energy requirements for the system. The model used here is technology agnostic, considering the price and energy requirements of well-documented carbon capture technologies as a function of outlet purity and percent capture. Since this approach has been generalized, it is not directly representative of the lower cost estimates in NA19, since those were associated with a single technology. Finally, in the NA19 low-cost scenarios, the solid sorbent analysis showed the same cost of CO$_2$ captured for solar and nuclear energy sources as the natural gas and coal scenarios. The operating cost of the system is highly dependent on the cost of thermal energy and electricity. Based on the current cost of energy, the NA19 low-cost scenarios may underestimate the energy operating cost associated with the solar and nuclear scenarios and, subsequently, underestimate the minimum cost of CO$_2$ net removed.}
from 0.25 tons CO₂ emitted/ton CO₂ captured at 3% outlet purity to about $30 to $125/ton CO₂. Using seawater or Mg-HCO₃-rich water 3 vol% CO₂, rather than with air. As in CarbFix Phase II (Gunnarsson et al., 2018), sparging can be used to equilibrate the circulating fluid with gas containing CO₂ enriched to 3 vol% CO₂. In turn, this could dramatically reduce the area that would be completely carbonated in a year via weathering in air. We use the method of Ogden et al. (2004), and compared to weathering of MgO in air. This kind of surficial, hybrid system was experimentally investigated by Harrison et al. (2012), who found that the rate of formation of solid Mg-carbonate from brucite (Mg(OH)₂) increased linearly as a function of increasing partial pressure of CO₂. As discussed in Section 4, this result would be similar for carbonation of MgO and heat-treated, serpentine-rich mine-tailings. MgO that would be completely carbonated in a year via weathering in air might be fully reacted in less than five days for MgO sparged with air enriched to 3 vol% CO₂. In turn, this could dramatically reduce the area requirement to remove a given mass of CO₂ from air per borehole per year, could be achieved at a total cost less than $200/ton CO₂ via circulation of CO₂-enriched water through peridotite formations with a permeability between 10⁻¹² and 10⁻¹³ m². In this hybrid DACSS – carbon mineralization scenario, our calculations suggest that CO₂ removal from air, at 8000 to 50,000 tons per borehole per year, would require 125,000 to 20,000 wells distributed over an area of 8000 to 1250 km², less daunting than the area requirement for in situ carbon mineralization alone.

Some key uncertainties require medium-scale field testing. In particular, the evolution of reaction progress and permeability during flow of fluid in a crystalline rock aquifer containing hierarchical fracture networks is difficult to predict. While modeling efforts are advisable, there really is no substitute for experiments at a scale that is tens to hundreds of times larger than the spacing of key fracture sets. As is evident from data reviewed in NA19, the potential reservoir for CO₂ capture and storage in peridotite formations is enormous, with a capacity > 10⁵ Gt of CO₂. Both rates and costs of CO₂ capture from subsurface circulation of water saturated in air are potentially competitive with other methods to achieve carbon dioxide removal from air, and as a consequence proposed methods warrant intensified, basic research to delineate the conditions for cracking rather than clogging, and determine a variety of important physical properties of fractured, partially serpentinized, subsurface peridotite. Additionally, field tests should shed light on the potential for contamination of local water supplies, induced earthquakes, and other possible, negative impacts. Meanwhile, studies of natural peridotite weathering suggest that these impacts will be minimal, as discussed in Section 3.4. For example, Ni and Cr concentrations aquifers and springs within peridotite catchments are orders of magnitude lower than EPA limits for safe drinking water (Table 1). Similarly, Hamilton et al. (2020, 2018) found that Ni and Cr concentrations were below analytical detection limits in water associated with ultramafic mine pits and tailings. With regard to earthquakes, pilot CO₂ storage experiments in sedimentary reservoirs with similar permeabilities have not encountered a significant seismic hazard (NA19).

If pathways can be found to positive feedback regimes, then the cost of CDR and storage via in situ carbon mineralization in peridotite, and via hybrid combinations of DAC and in situ carbonation, could be relatively low (e.g., Figs. 10 and 12), comparable to estimated costs for nth-of-a-kind DAC with synthetic sorbents. And finally, in situ carbon mineralization driven by circulation of surface water through peridotite could be combined with geothermal power generation.

In the United States, potential sites for in situ CDR and storage in peridotite are abundant near both coasts (Krevor et al., 2009). In order to achieve C solubility (mainly as bicarbonate ion, HCO₃⁻) is limited by the availability of charge-balancing cations (mainly, Mg²⁺ and Ca²⁺). Additional enhancements in dissolved C concentration can be achieved by adding alkalinity. However, this is limited at high concentrations by saturation in carbonate minerals. Adding a commercially available base, such as NaOH or NaHCO₃ would probably be costly, per ton of CO₂ dissolved. Here, we calculate the effects of equilibrating water with heat-treated serpentine or ultramafic tailings or MgO as well as CO₂-enriched gas, in the kind of surficial process described two paragraphs previously. Calculated C concentrations produced by equilibration of water with an equal mass of serpentinitized peridotite (average harzburgite, Hanghøj et al., 2010) plus gas with 3 vol% CO₂ at 2 to 10 bars are 0.0144 to 0.0277 mol per liter, equivalent to 600 to 1600 ppm CO₂. Calculations using MgO rather than peridotite produce a similar result.

Using a CO₂ concentration in circulating fluid of 1600 ppm for in situ carbon mineralization calculations, instead of 100 ppm in Section 4.2.3, yields lower costs per ton of CO₂, (for the in situ process alone) and higher rates of CO₂ uptake per borehole per year. Fig. 12 illustrates these costs, including the approximate cost of $65 for DAC enrichment of gas to 3 vol% CO₂ and $125/ton CO₂ for compression of CO₂-enriched gas to 10 bars prior to sparging in water for circulation through peridotite. In this hybrid DACSS – carbon mineralization scenario, our calculations suggest that CO₂ removal from air, at 8000 to 50,000 tons per borehole per year, would require 125,000 to 20,000 wells distributed over an area of 8000 to 1250 km², less daunting than the area requirement for in situ carbon mineralization alone.
to realize enhanced reaction rates at elevated temperatures, areas of high heat flow are preferred, and these are localized in the western States. One of the largest peridotite massifs in North America, the Trinity peridotite in northern California, dips beneath the Cascade volcanic front (Fuis et al., 1987), an area of high heat flow with elevated temperatures at shallow depth (Bonner et al., 2003; Ingebritsen and Mariner, 2010), ideal for both geothermal power production and carbon mineralization in peridotite. Similarly, smaller bodies of peridotite flank the geothermal area in the Geysers region of northern California (Sadowski et al., 2016), near the Calpine power plant, which is the largest geothermal power plant in the world.

6. Research agenda

6.1. Carbon mineralization kinetics

For proposed surficial carbon mineralization, in which it is proposed to leave reactants exposed to the weather for a year or more, laboratory experiments are challenging due to slow reaction rates. However, the preliminary estimates in Section 3 suggest that surficial methods may be robust and relatively inexpensive, and this should drive experimental inquiry. An excellent set of experiments on low temperature brucite carbonation at a variety of CO₂ partial pressures (Harrison et al., 2012) allowed extrapolation to rates during weathering, providing an important check on long, difficult, direct determination of rates in air and surface water at ambient temperature. This could be a useful template for similar experiments on other materials. In particular, the rate of CO₂ uptake during weathering of caustic MgO could be very important, and is essentially unknown. Experimental and theoretical optimization of grain size for surficial carbon mineralization feedstock, minimizing grinding costs while maximizing rates, is another important area for laboratory, kinetic investigation.

NA19 contains a reasonably up-to-date compilation of carbon mineralization rates for different minerals, rock compositions and industrial wastes at elevated temperature and pressure, applicable to in situ carbon mineralization. Comparison of rates for different materials is still hampered by a lack of consistency in experimental methods, though Gadikota et al. (2020) provide a consistent set of experimental data for carbonation of olivine, plagioclase feldspar, basalt and a gabbroic rock (“anorthosite”). Recent work indicating rapid olivine hydration in the presence of high pH aqueous fluids (Andreani et al., 2013; Lafay et al., 2012) suggests that there should be renewed, systematic investigation of the effect of pH on carbon mineralization rates. The compilation is missing key data for carbon mineralization rates in alkaline industrial wastes. Producing a full matrix of experimental data for minerals, rocks and wastes, allowing comparison using units such as mol/(m² s), or mass fraction per second at a common grain size, at the same pressure, temperature and fluid composition, is a worthy research goal.

6.2. Chemo-mechanical feedbacks

Crystalline ultramafic rock tends to have low porosity and extensive fracturing. These characteristics create the potential for important feedbacks between carbon mineralization and permeability as discussed in Section 4.2.2. Consequently, extensive studies of chemo-mechanical processes are required to determine the conditions favoring reaction-driven cracking and other positive feedbacks, as well as the conditions leading to clogging of pore space and passivation via armoring of reactive surfaces. A crucial research goal is to create a “phase diagram” delineating the conditions favoring “cracking” versus “clogging” for carbon mineralization in ultramafic rocks.

If reaction-driven cracking were well understood, it would be possible to engineer conditions that generate ramified fracture networks at the grain scale. Such approaches could be valuable for a variety of technologies, including CO₂ capture and storage, geothermal power generation, in situ mining, and extraction of oil and gas from low permeability reservoirs. Similarly, avoiding reaction-driven cracking is important for ensuring the long-term integrity of impermeable cap rocks and well cement in boreholes for subsurface CO₂ and hydrocarbon reservoirs.

Increasingly, researchers are realizing that nano-scale material characteristics (mineral fluid surface energy, sorptivity, disjoining pressure) may play a key role in controlling the bifurcation between clogging and cracking. Because these characteristics vary in unpredictable ways from one material to another, research is moving away from simple analog systems (hydration or carbonation of CaO, MgO, and CaSO₄) toward experiments involving the most geologically
relevant rock formations (e.g., peridotite and basalt for CO$_2$ capture and storage, shale for oil and gas, and sandstone for uranium). A growing community is working on these topics, inspired in part by the problems and promise of in situ mineral carbonation, and the dialog among different research groups around the world promises to be productive.

6.3. Field-scale pilot experiments

6.3.1. Surficial carbon mineralization

Based on extensive research by a few groups focused on this topic, surficial carbon mineralization for CDR and solid storage is ready for kiloton to megaton per year field experiments, together with extensive field inventories and laboratory characterization of the reactivity of various potential solid reactants. Field experiments on mine tailings and industrial wastes may be particularly good opportunities for university-industry and/or government-industry partnerships, as illustrated by a recently initiated collaboration involving the diamond-producer DeBeers and several academic research groups (Mervine et al., 2017). Significant limitations are the relatively small mass of accumulated and annually produced of mine-tailings, and the relatively limited CO$_2$ storage capacity of some industrial wastes with low concentrations of Mg and Ca. More effort needs to be focused on potential effects of geochemical contamination, because in many cases implementation is likely to be close to surface water and ground water resources. Carbonation of ultramafic mine tailings could be combined with efforts to reduce asbestos hazard at these sites, and carbonation of industrial wastes may also mitigate environmental hazards.

Progress on verification protocols and regulatory and pricing frameworks is another priority. Because of recent, damaging failures of tailings dams in the United States and Canada, the current regulatory and social environment discourages innovation in the design of tailings storage facilities. Creating a safe research space to explore innovation could ultimately lead to safer and more efficient operations. Funding could come from current and prospective industry partners.

Some work has focused on local modifications to ultramafic mine tailings, particularly mine tailings from highly altered serpentinites that include abundant brucite (and asbestiform chrysotile) (Alt et al., 2007; Assima et al., 2012; Assima et al., 2013a; Assima et al., 2013b; Assima et al., 2014a; Assima et al., 2014b; Assima et al., 2014c; Assima et al., 2014d; Bea et al., 2012; Hansen et al., 2005; Harrison et al., 2015; Harrison et al., 2016; Harrison et al., 2012; Larachi et al., 2010; Larachi et al., 2012; McCutcheon et al., 2015; Mervine et al., 2017; Power et al., 2009; Power et al., 2010; Power et al., 2016; Power et al., 2013a; Power et al., 2013b; Power et al., 2013c; Power et al., 2011; Power et al.,

Table 1

Cr and Ni concentrations in water samples from peridotite-hosted surface water and aquifers in Oman. Paukert et al. (2012) and Paukert Vankeuren et al. (2019) describe methods of sample collection and analysis.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Site Location</th>
<th>Zone 40Q Easting</th>
<th>Zone 40Q Northing</th>
<th>pH</th>
<th>ppb Cr</th>
<th>ppb Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM10_06A</td>
<td>Falej Al-Haloooh</td>
<td>Al-Banah 0487584</td>
<td>2575976</td>
<td>11.65</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>OM09_06G</td>
<td>Nemo</td>
<td>Dima 06631140</td>
<td>2542366</td>
<td>8.84</td>
<td>3.3</td>
<td>1.6</td>
</tr>
<tr>
<td>OM10_01C</td>
<td>Wadi Input 1</td>
<td>Misbit 0625974</td>
<td>2576257</td>
<td>9.31</td>
<td>3.0</td>
<td>0.5</td>
</tr>
<tr>
<td>OM10_01D</td>
<td>Wadi Input 2</td>
<td>Misbit 0625962</td>
<td>2576230</td>
<td>8.56</td>
<td>4.1</td>
<td><0.5</td>
</tr>
<tr>
<td>OM09_10W</td>
<td>15 Jurges up wadi</td>
<td>Misbit 0625674</td>
<td>2575981</td>
<td>8.66</td>
<td>4.2</td>
<td><0.5</td>
</tr>
<tr>
<td>OM09_08S</td>
<td>Aqueduct</td>
<td>Qafifah 0645906</td>
<td>2533939</td>
<td>8.99</td>
<td>3.2</td>
<td><0.5</td>
</tr>
<tr>
<td>OM09_09F</td>
<td>Wadi Turritorum</td>
<td>Qafifah 0645927</td>
<td>2533408</td>
<td>8.59</td>
<td>2.9</td>
<td><0.5</td>
</tr>
<tr>
<td>OM10_04X</td>
<td>Palm Pool (fresh input)</td>
<td>Qafifah 0645745</td>
<td>2533408</td>
<td>8.59</td>
<td>2.9</td>
<td><0.5</td>
</tr>
<tr>
<td>OM09_01W</td>
<td>Fresh pool</td>
<td>Shumayt 0486065</td>
<td>2588649</td>
<td>8.21</td>
<td>1.9</td>
<td>3.2</td>
</tr>
<tr>
<td>OM10_00A</td>
<td>Audrey II</td>
<td>Shumayt 0486065</td>
<td>2588470</td>
<td>7.90</td>
<td>1.3</td>
<td>2.7</td>
</tr>
<tr>
<td>OM10_03W</td>
<td>Edwin II</td>
<td>Ugyahah 0426225</td>
<td>2633900</td>
<td>8.49</td>
<td>4.9</td>
<td><0.5</td>
</tr>
<tr>
<td>OM09_01Y</td>
<td>Wadi Jahawif</td>
<td>Wadi Jahawif 0509861</td>
<td>2608158</td>
<td>8.71</td>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>OM09_01Z</td>
<td>Mohammed</td>
<td>Sudari 0442767</td>
<td>2649885</td>
<td>8.75</td>
<td>4.9</td>
<td>1.7</td>
</tr>
<tr>
<td>OM09_00A</td>
<td>King Arthur</td>
<td>Sudari 0443057</td>
<td>2650131</td>
<td>8.76</td>
<td>3.7</td>
<td>0.7</td>
</tr>
<tr>
<td>OM11_00X</td>
<td>SJA-4B</td>
<td>Peridotite borehole 0601942</td>
<td>2582983</td>
<td>9.10</td>
<td>5.2</td>
<td><0.5</td>
</tr>
<tr>
<td>OM11_00Y</td>
<td>SJA-4A</td>
<td>Peridotite borehole 0601962</td>
<td>2582964</td>
<td>7.57</td>
<td>9.1</td>
<td>0.6</td>
</tr>
<tr>
<td>OM12_00A</td>
<td>SJA-3B</td>
<td>Peridotite borehole 0602847</td>
<td>2582068</td>
<td>9.36</td>
<td><0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>OM10_00B</td>
<td>SJA-5B</td>
<td>Peridotite borehole 0602847</td>
<td>2582068</td>
<td>9.05</td>
<td>1.3</td>
<td>4.3</td>
</tr>
<tr>
<td>OM12_08A</td>
<td>SJA-5C</td>
<td>Peridotite borehole 0602847</td>
<td>2582068</td>
<td>9.05</td>
<td>1.3</td>
<td>4.3</td>
</tr>
<tr>
<td>OM10_00C</td>
<td>WDA-05 at 65 m</td>
<td>Peridotite borehole 0602847</td>
<td>2582068</td>
<td>9.05</td>
<td>1.3</td>
<td>4.3</td>
</tr>
<tr>
<td>OM12_00D</td>
<td>WDA-05 at 65 m</td>
<td>Peridotite borehole 0602847</td>
<td>2582068</td>
<td>9.05</td>
<td>1.3</td>
<td>4.3</td>
</tr>
<tr>
<td>OM12_00E</td>
<td>WDA-05 at 140 m</td>
<td>Peridotite borehole 0602847</td>
<td>2582068</td>
<td>9.05</td>
<td>1.3</td>
<td>4.3</td>
</tr>
<tr>
<td>OM12_00F</td>
<td>WDA-05 at 140 m</td>
<td>Peridotite borehole 0602847</td>
<td>2582068</td>
<td>9.05</td>
<td>1.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Based on extensive research by a few groups focused on this topic, surficial carbon mineralization for CDR and solid storage is ready for kiloton to megaton per year field experiments, together with extensive field inventories and laboratory characterization of the reactivity of various potential solid reactants. Field experiments on mine tailings and industrial wastes may be particularly good opportunities for university-industry and/or government-industry partnerships, as illustrated by a recently initiated collaboration involving the diamond-producer DeBeers and several academic research groups (Mervine et al., 2017). Significant limitations are the relatively small mass of accumulated and annually produced of mine-tailings, and the relatively limited CO$_2$ storage capacity of some industrial wastes with low concentrations of Mg and Ca. More effort needs to be focused on potential effects of geochemical contamination, because in many cases implementation is likely to be close to surface water and ground water resources. Carbonation of ultramafic mine tailings could be combined with efforts to reduce asbestos hazard at these sites, and carbonation of industrial wastes may also mitigate environmental hazards.
mineralization. For example, peridotite-rich sediments derived from
volume ratios and are present along some tectonic plate boundaries. A
able in peridotite-rich alluvial gravels, which have high surface area
to slurry pipes that transport tailings. Two recent studies demonstrate
the potential for up to a million-fold acceleration of carbon mineralization
rates by sparging CO₂ rich gas through mine tailings (Assima et al.,
2013a; Harrison et al., 2012). Their experiments achieved rates at
ambient surface temperatures that approach or exceed the highest labo-
ratory rates for carbon mineralization at elevated temperature and
pressure, at least for CO₂ uptake of 3 to 10 wt%. Similar techniques
might also be applied to alkaline industrial waste heaps. This is
a promising avenue of research, which should be pursued in both lab-
oratory experiments and field-scale pilot studies at several mine sites.
Carbon mineralization in crushed ultramafic materials may be vi-
able in peridotite-rich alluvial gravels, which have high surface area to
volume ratios and are present along some tectonic plate boundaries. A
study of one ancient deposit found that it was already extensively
carbonated (Beinlich et al., 2010). However, other basins with large
volumes of peridotite gravel should be investigated to determine the
extent to which they offer potential reactants for engineered carbon
mineralization. For example, peridotite-rich sediments derived from
mechanical weathering of the Samail ophiolite in Oman and the United
Arab Emirates are present in km-thick formations below the Batainah
coastal plain (e.g., Al Lazki et al., 2002) and in the extensive Barzaman
Formation south and west of the ophiolite (Lacinska et al., 2014; Radies
et al., 2004; Styles et al., 2006). While some of the ultramafic clasts in
these rocks are extensively altered, subsurface exploration for less al-
tered, more reactive potential CO₂ reservoirs in these settings is war-
ranted.

6.3.2. In situ CDR and carbon mineralization in ultramafic and mafic rocks
It will be important to undertake two or three small- to medium-
scale (~1 to 100 kt/year) field experiments. We envision multi-step
pilot projects with gradually increasing cost, ambition, and risk, ideally
with government and industry partners. Such projects will first require
scoping efforts—characterizing physical properties and the suitability
of rock formations for possible projects, and assessing the long term
potential for significant CO₂ storage reservoirs. Scoping will also in-
clude a significant component of policy research, public outreach, and
investigation of political and social factors in nearby communities and
regions.

Once geologically and socially appropriate sites have been identi-
fied, pilot studies can be designed based on specific local opportunities.
One generic first step might be to produce water from existing, alkaline,
carbon-depleted aquifers for direct uptake of CO₂ from air to form
travertine deposits on the surface, and increase the concentration of
dissolved bicarbonate in surface water. The size, permeability, pro-
ductivity, and physical and chemical recharge rates of peridotite-
hosted, alkaline aquifers are unknown, and could readily be evaluated
for several sites at a relatively low cost. Experiments could then pro-
gress to injecting recycled water into peridotite aquifers, with con-
tinued characterization of injectivity, permeability, volume, and sub-
surface rates of subsurface CO₂ mineralization. Pending a successful
outcome of this step (CO₂ removal from circulating fluids, no sustained
decrease in permeability), experiments could progress to investigating
deeper circulation into hotter rock formations, with faster carbon
mineralization rates. A final set of experiments could include injecting
fluids with high CO₂ concentration to evaluate proposed storage of CO₂
captured elsewhere. The steps involving production and re-injection of
ground water depend on government regulations, but might be rela-
tively straightforward to implement.

The likely cost of such a phased experiment is estimated to increase
from $1-3 M per year in the early stages, to $10 to $20 M per year when
reached to the 100,000 to 1 M ton/year scale, based on the costs of
CarbFix Phase I (Edda Aradottir, personal communication, 2017) and
a notional budget for a large scale experiment on CO₂ storage in basalt
(NA19, Appendix D, Table D.1). Because carbon mineralization rates in
peridotite are optimal at ~185 °C, there is potential synergy between
carbon mineralization and geothermal power generation. One good
region to explore this synergy is northern California, where carbon
management incentives and an active geothermal industry might fa-
cilitate combined government and industry participation.

6.4. Process engineering
There is considerable room for optimization of surficial methods, particu-
larly MgO-MgCO₃ looping methods but also applicable to mine
tailings in general, involving the energy source used for calcining, the
area and thickness of reactive tailings fields used for weathering, the
cost of potential stirring methods, the number of fields per calcining
plant, the grain size of the tailings, and the time allowed for weath-
ering, together with significant unknowns about reaction rates in dif-
ferent weathering environments, and the degradation or enhancement
of materials during repeated cycles of weathering and calcining.

Similarly, there are many unknown parameters that are important
for in situ carbon mineralization methods. These include optimizing
the method and duration required for CO₂ uptake in CaOH-rich alkaline
waters from peridotite aquifers, to draw down CO₂ from air, form solid
calcium carbonate minerals for solid storage, and create CO₂-rich wa-
ters prior to circulation through subsurface peridotite. Though it may
not be socially acceptable everywhere, use of hydrofracturing to en-
hance subsurface peridotite is another potential avenue for optimiza-
tion of in situ methods.

For methods combining partial enrichment of CO₂ in air using
DACSS with carbon mineralization, there are many additional oppor-
tunities for potential optimization, including specific methods for
sparging CO₂-bearing gas through tailings, for surficial carbon miner-
alization, or through peridotite-saturated water, prior to circulation
through peridotite for in situ carbon mineralization.

7. Summary: Cost, capacity, potential and steps forward

Combined CO₂ removal from air (CDR) and solid storage, via sur-
ficial processes using existing ultramafic mine tailings, could be a re-
latively inexpensive and straightforward technology. Mining and
churning ultramafic rocks for the purpose CDR and storage may be cost-
competitive with direct air capture systems using synthetic sorbents
(DACSS), within the uncertainties for cost estimates for each type of
process. The area footprint required is large, but both cost and area
requirements can be greatly reduced by calcining carbonate reaction
products, storing or selling CO₂, and re-using MgO and/or CaO to re-
move CO₂ from air via weathering. Similarly, in situ carbon miner-
alization, circulating CO₂-bearing aqueous fluid through subsurface
fracture systems in ultramafic rocks, may be cost competitive with
DACSS. Wells for in situ systems have a small footprint, but the re-
quirement that wells must be far apart yields overall area requirements
that are comparable to the total area of exposed mantle peridotite on
land. Hybrid methods, using DACSS to enrich CO₂ to, e.g., 3%, com-
bined with surficial and in situ carbon mineralization methods may
reduce costs and area requirements compared to either of the end-
member processes. Given the urgency to mitigate greenhouse gas
emissions at scale, all of these avenues for mitigating CO₂ emissions via
carbon mineralization warrant continued, accelerated research programs, including laboratory experiments, numerical modeling, investigation of social and regulatory factors, environmental impacts, and field scale pilot projects.

Declaration of competing interest

Acknowledgements

We thank the two anonymous reviewers who worked hard to provide detailed, constructive reviews that substantially improved this long paper. We thank the National Academy committee who authored NA19, particularly the committee Chair, Steve Pacala, and those who presented at the committee meetings, particularly Edda Aradottir. The stimulating discussions of that committee continue to inspire and guide our research. Kelemen’s effort on this paper and the underlying research has been supported by Alfred P. Sloan Foundation Grant 2014-3-01, NSF Research Grants EAR-1520732 and EAR-1516300, the International Continental Scientific Drilling Program (ICDP) Oman Drilling Project and Kelemen’s Arthur D. Storke Chair at Columbia University. Wilcox and McQueen’s efforts on this paper were supported in part by Prime Impact Fund. Renforth’s contribution was supported by the UK Programme on Greenhouse Gas Removal (grants NE/P019943/1 and NE/P019730/1). Dipple is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. Mark Sonnenfeld kindly guided us to the petroleum engineering literature on calculating fluid flow in boreholes. We are very grateful to James Leong, Everett Shock, Dan McCorkle and Bob Anderson for providing a reality check on carbon solubility in water, particularly in sea water. Dan Sanchez was an enthusiastic and ambitious member of a breakout group, assessing hybrid DAC + carbon mineralization methods at the Negative Emissions Technologies Workshop in Edinburgh in May 2019 without his insistence that we should develop something new and transformative, we might not have worked so hard on Section 5, Jürg Matter, Eric Oelkers, Alissa Park, Dave Goldberg and Julio Friedman provided advice on CO2 storage via carbon mineralization at CarbFix, the history of MgO looping for CO2 capture from flue gas, and the size of the CO2 utilization market. Roger Aines, Noah Deich, Larry Linden, Shashank Samala, Kevin Tidwell and Roger Ullman have been constant sources of encouragement and moral support.

References

