Data Science Expertise in 10 weeks
The Consortium for Research in Elastic Wave Exploration Seismology (CREWES) Data Science training is a 10-week course consisting of theoretical and hands-on data analysis and machine learning modeling provided by the CREWES Data Science Initiative. It is intended for anyone who wants to understand Data Science and apply it to real-world scenarios. You will use examples from the Oil and Gas industry, marketing, and economics and work with classmates as a data science team on your final project.
During the course, you will go through a complete data scientist workflow, data loading, building machine learning models and predictions, and interpreting results using your experience for insightful solutions. In addition, you will get familiar with the fast-paced data science work environment, learn commonly used algorithms and packages, and explore the path you want to follow.
In this course, you will learn how to use Python for data analysis, data cleaning, visualization, data processing, machine learning, model interpretation, teamwork, and how to present your developments and findings.
Leaning by going hands-on!
The course uses professional experience to focus on four key points of data science workflow: computer programming, data processing, modeling, and business practice. Students will work in groups on a final project using well log data (or any data of your desire). You will learn all the steps of a project pitch and results demonstrations.
Course Learning Outcomes
By the completion of this course, successful students will be able to:
- Use Python for data analysis and modeling, taking advantage of the most used libraries
- Practice teamwork, communication, and collaboration across the whole data science workflow
- Interpret and handle challenging real-life data sets
- Create (or refine) your portfolio to support your career path
Topics of instruction
Computer Programming
- Python basics
- Data types
- Python libraries
- Troubleshooting
- Work with tabular data (dataframes)
Data Processing
- Load data: tabular data to dataframes
- Visualization: types of plots; Matplotlib and Seaborn libraries
- Data analyses: check the data; look for missing data; data visualization
- Data cleaning: remove bad data
- Data preparation: recover missing values; data augmentation; prepare for modeling
Modeling
- Scikit-Learn and XGBoost libraries
- Regression models
- Classification models
- Clustering models
- Hybrid models (combining different machine learning models)
- Model interpretation
Business Practice
- Project management
- Team communication
- Data and code sharing with GitHub
About CREWES
The Consortium for Research in Elastic Wave Exploration Seismology (CREWES) is an applied geophysical research group concentrating on the acquisition, analysis, inversion and interpretation of multicomponent seismic data. We are located in the Department of Geoscience at the University of Calgary.
Our Data Science division (CREWES Data Science Initiative, or CREWES DSI) focuses on a broader set of projects related to Environmental, Energy, Geoscience, and Engineering.